全球肝脏肿瘤病灶区CT图像分割挑战大赛,联想E-Health夺得冠军

简介: 本文讲的是全球肝脏肿瘤病灶区CT图像分割挑战大赛,联想E-Health夺得冠军,在近日结束的全球LiTS (Liver Tumor Segmentation Challenge,肝脏肿瘤病灶区CT图像分割挑战)大赛上,联想研究院人工智能实验室推出的E-Health解决方案 (也称leHealth)力压群雄,夺得冠军。


image

本文讲的是全球肝脏肿瘤病灶区CT图像分割挑战大赛,联想E-Health夺得冠军,在近日结束的全球LiTS (Liver Tumor Segmentation Challenge,肝脏肿瘤病灶区CT图像分割挑战)大赛上,联想研究院人工智能实验室 (Lenovo AI Lab)推出的E-Health解决方案 (也称leHealth)力压群雄,夺得冠军。

LiTS国际大赛是什么?

LiTS大赛由慕尼黑理工大学、以色列特拉维夫大学等高校、科研院所与国际顶级医学图像年会MICCAI 2017联合举办。大赛参赛项目来自全球35个国家,其中197个参赛项目来自中国,155个来自美国,42个来自印度。

这么多的参赛者要解决一个什么问题?——用创新的算法解决肝脏肿瘤病灶CT图像的自动分割。医学图像分割对疾病诊断、图像引导手术以及医学数据的可视化具有重要的作用,能为临床诊疗和病理学研究提供可靠的依据。而由于肝脏肿瘤病灶的复杂性特点,对其CT图像的自动分割相当困难。

image


世界领先的肝脏肿瘤CT图像分割准确率

在全球众多的参赛项目中,联想的E-Health最终以世界领先的肝脏肿瘤CT图像分割准确率指标 (dice per case)夺得大赛冠军。


image

那么E-Health到底有什么特别之处呢?

E-Health是联想研究院(Lenovo Research)应用于医学领域的智能医疗图像辅助诊断解决方案。它集成了前沿的深度学习算法,依托于拥有强大计算能力的联想云平台,凝聚了众多医学专家全方位的诊疗经验。在使用中一方面在减轻医生工作量的同时也可以避免由于医生疲劳等因素而产生的误诊情况;另一方面能够智能分析医疗图像自动为医生提供辅助诊断的意见。

目前,E-Health的应用主要体现在以下四个方面:

  • 肿瘤的自动检测与分类。通过业界领先的深度学习算法,智能的分析患者CT图像,自动判断患者是否存在肿瘤;如果存在肿瘤,还能判断出该肿瘤的性质、大小、位置、类别等信息,辅助医生进行诊断;
  • CT图像中肿瘤数据的自动标注。在CT图中加入比例尺及病人和CT图像的基本信息,并且可以在CT图像中智能标注肿瘤的位置和状态,方便医生读取图像信息;
  • 集成肿瘤特性的三维模型展示。通过算法将集成了肿瘤特性的三维模型在系统中显示,方便患者与医生进行沟通与交流,了解自身病情;
  • 诊断报告自动生成。系统能够将肿瘤检测结果、分类结果、肿瘤形态等信息进行整合,自动生成诊断报告。同时医生可以在自动生成的诊断报告基础上进行修改,在减轻医生工作量的同时提高工作效率。

此次在LiTS大会上夺得冠军,更是凸显了E-Health在数据分析处理、算法和深度学习平台技术方面的优势。

  • 首先,医学图像处理常见的问题来自于标注数据噪音,特别是在有限训练数据样本的情况下会影响深度学习模型的性能,因此首先要对数据做好预处理工作,E-Health在这方面表现得相当出色。
  • 其次,在算法方面,由于肝脏肿瘤数据是多样的,来自于不同的医院。有鉴于此,联想E-Health团队设计了不同的深度学习模型,能够自适应地学习数据的特性。

image

  • 第三,E-Health的背后是联想先进的、异构的人工智能深度学习平台。它是一个分布式深度学习平台,支持多种开源框架,可实现分布式任务调度,通过多节点并行加速实验、算法研究和模型迭代的过程,能够面向多个AI应用,如自然语言理解,语音识别等。

该平台在性能上达到了行业先进水平。在存储方面,系统使用了超融合架构,针对SSD进行了性能优化;在网络方面,平台使用高性能40G网络交换机来搭建高速网络;在计算方面,采用高性能GPU/FPGA加速,扩展性、加速比很好,支持异构。

原文发布时间为:2017-09-22
本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”微信公众号
原文链接

相关文章
|
SQL 分布式计算 监控
Sqoop数据迁移工具使用与优化技巧:面试经验与必备知识点解析
【4月更文挑战第9天】本文深入解析Sqoop的使用、优化及面试策略。内容涵盖Sqoop基础,包括安装配置、命令行操作、与Hadoop生态集成和连接器配置。讨论数据迁移优化技巧,如数据切分、压缩编码、转换过滤及性能监控。此外,还涉及面试中对Sqoop与其他ETL工具的对比、实际项目挑战及未来发展趋势的讨论。通过代码示例展示了从MySQL到HDFS的数据迁移。本文旨在帮助读者在面试中展现Sqoop技术实力。
953 2
完美解决->“pip : 无法将“pip”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。”
完美解决->“pip : 无法将“pip”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。”
完美解决->“pip : 无法将“pip”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。”
|
10月前
|
监控 Java 数据库连接
Spring c3p0配置详解
在Spring项目中配置C3P0数据源,可以显著提高数据库连接的效率和应用程序的性能。通过合理的配置和优化,可以充分发挥C3P0的优势,满足不同应用场景的需求。希望本文的详解和示例代码能为开发者提供清晰的指导,帮助实现高效的数据库连接管理。
467 10
|
前端开发 搜索推荐 API
【Prompt Engineering:ReAct 框架】
ReAct 框架由 Yao 等人(2022)提出,结合大语言模型(LLMs)生成推理轨迹与任务操作,交替进行推理与行动。此框架允许模型与外部环境(如知识库)互动,以动态更新操作计划并处理异常。ReAct 在语言和决策任务上表现优异,提升模型的人类可解释性和可信度。研究显示,ReAct 优于多个基准模型,尤其在结合链式思考时效果最佳。通过实例演示,ReAct 能有效整合内外部信息,优化推理过程。
767 9
【Prompt Engineering:ReAct 框架】
|
9月前
|
SQL 运维 关系型数据库
体验用分布式数据库突破资源瓶颈,完成任务领智能台灯!
体验用分布式数据库突破资源瓶颈,完成任务领智能台灯!
|
JavaScript Java 测试技术
基于SpringBoot+Vue+uniapp的网上招聘系统的详细设计和实现(源码+lw+部署文档+讲解等)
基于SpringBoot+Vue+uniapp的网上招聘系统的详细设计和实现(源码+lw+部署文档+讲解等)
156 1
|
机器学习/深度学习 编解码 数据可视化
UNet 和 UNet++:医学影像经典分割网络对比
UNet 和 UNet++:医学影像经典分割网络对比
2034 0
Undefined symbols for architecture x86_64: "_OBJC_CLASS_$_ZMCertification", referenced from:解决方法
Undefined symbols for architecture x86_64: "_OBJC_CLASS_$_ZMCertification", referenced from:解决方法
349 0
|
Java 数据库连接 数据库
【SSM框架】SSM到底是什么,为什么这么多人使用
【SSM框架】SSM到底是什么,为什么这么多人使用
12097 0