《白话深度学习与TensorFlow》——3.4 如何选择好的框架

简介: 本节书摘来自华章计算机《白话深度学习与TensorFlow》一书中的第3章,第3.4节,作者:高扬,卫峥著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.4 如何选择好的框架

作为计算模型来说,深度学习中的绝大部分基本理论早已沉淀成了固化的计算模块、函数或者算法包。就计算模型本身来说,框架之间的差别不会太大,也不可能太大,除非这个领域的理论层面得到了极大的突破,而且这个突破还是不同方向且掌握在个别组织手里的。而现在框架之间的差别主要出现在这几个地方。
第一,性能方面。
这一属性主要由底层的实现语言决定,底层运行比较快的仍旧是实现的语言。理论上说,运行速度最快的仍旧是C或C++一类,离着CPU指令近一些语言效率高一些。
笔者用过Torch、TensorFlow、Chainer、Caffe等多种框架,虽然没有经过系统地压测和对比以及时下流行的跑分测试,但仍然有个比较感性的感觉——相同情况下Torch运行的速度略快一些,而TensorFlow老实说确实不能算快的甚至是这几款里面比较慢的。不过笔者从来不觉得这是什么大问题,这种效率的差距仅仅是零点几倍或者一点几倍,而真正在工程实现方面的差距大多来自样本数量、网络设计等方面,这些方面的差距可能都是一两个数量级的(差10倍或者100倍),所以这种效率不是最重要的参考标志。
第二,社区活跃度。
这些开源的项目虽然多,但是社区活跃与否是个非常重要的因素,甚至几乎是首选的因素。活跃的社区意味着有更多的人正在使用这样一个项目,会有更多的人贡献代码,提交Bug,遇到错误你也很容易找到前人踩坑留下的垫坑石。因而做起项目来风险也相对比较小,学习起来进步也会快一些。
第三,语言。
这几乎是最不重要的一个方面,因为不管什么语言,实现的框架大多都会支持Python的“驱动”,或者我们称接口。当然也有很多比较执拗的框架只提供人家自己原生的接口,例如Torch只支持Lua脚本,CNTK只支持C++等。
说它不重要是因为,在这样一个应用场景中网络建立的逻辑比较有限,所以涉及的语法内容也非常有限,学习成本也不高,反正从逻辑和模型层面是没有差别的。
应该说TensorFlow在这些方面做得还都是令人满意的。首先它有着非常活跃的社区:www.tensorflow.org,主页的日均PV有40到50万之多。这对于一个小众化的技术网站已经是个不得了的数字了。
image

它的英文社区比中文社区活跃得多,而且在Stackoverflow上的问题讨论也非常多,目前有8000多个被跟帖的帖子,每天都会有不少新帖出来,所以在成功的路上你不会孤单。
image

语言嘛,Python肯定是首选,笔者大多是使用Python 2.7+ TensorFlow的方式来工作的,很方便。
性能就像我刚才所说的,虽然感觉上并不快,但是满足目前的工作已经足够了。而且这种数量级的效率提升是无法通过更换一个框架来实现的。
总体来说TensorFlow应该是所有深度学习框架中比较适合用来进行工程应用的。

相关文章
|
1月前
|
机器学习/深度学习 PyTorch TensorFlow
66_框架选择:PyTorch vs TensorFlow
在2025年的大语言模型(LLM)开发领域,框架选择已成为项目成功的关键决定因素。随着模型规模的不断扩大和应用场景的日益复杂,选择一个既适合研究探索又能支持高效部署的框架变得尤为重要。PyTorch和TensorFlow作为目前市场上最主流的两大深度学习框架,各自拥有独特的优势和生态系统,也因此成为开发者面临的经典选择难题。
|
11月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
929 55
|
4月前
|
机器学习/深度学习 存储 监控
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
本项目基于深度学习的YOLO框架,成功实现了城市道路损伤的自动检测与评估。通过YOLOv8模型,我们能够高效地识别和分类路面裂缝、井盖移位、坑洼路面等常见的道路损伤类型。系统的核心优势在于其高效性和实时性,能够实时监控城市道路,自动标注损伤类型,并生成损伤评估报告。
252 0
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
|
4月前
|
机器学习/深度学习 自动驾驶 算法
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
在智慧交通和智能驾驶日益普及的今天,准确识别复杂交通场景中的关键元素已成为自动驾驶系统的核心能力之一。传统的图像处理技术难以适应高动态、复杂天气、多目标密集的交通环境,而基于深度学习的目标检测算法,尤其是YOLO(You Only Look Once)系列,因其检测速度快、精度高、可部署性强等特点,在交通场景识别中占据了重要地位。
518 0
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
|
8月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
472 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
9月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
903 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
10月前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
2297 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
11月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
549 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
9月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
|
12月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
985 5