iOS 防 DNS 污染方案调研--- HTTPS(非SNI) 业务场景

简介: 本文主要介绍 HTTPS(含SNI) 业务场景下在 iOS 端实现 “IP直连” 的通用解决方案。

1. 背景说明

本文主要介绍 HTTPS(含SNI) 业务场景下在 iOS 端实现 “IP直连” 的通用解决方案。

1.1 HTTPS

发送 HTTPS 请求首先要进行 SSL/TLS 握手,握手过程大致如下:

  1. 客户端发起握手请求,携带随机数、支持算法列表等参数。
  2. 服务端收到请求,选择合适的算法,下发公钥证书和随机数。
  3. 客户端对服务端证书进行校验,并发送随机数信息,该信息使用公钥加密。
  4. 服务端通过私钥获取随机数信息。
  5. 双方根据以上交互的信息生成session ticket,用作该连接后续数据传输的加密密钥。

上述过程中,和“IP直连”有关的是第3步,客户端需要验证服务端下发的证书,验证过程有以下两个要点:

  1. 客户端用本地保存的根证书解开证书链,确认服务端下发的证书是由可信任的机构颁发的。
  2. 客户端需要检查证书的 domain 域和扩展域,看是否包含本次请求的 host。

如果上述两点都校验通过,就证明当前的服务端是可信任的,否则就是不可信任,应当中断当前连接。

当客户端使用“IP直连”解析域名时,请求URL中的host会被替换成解析出来的IP,所以在证书验证的第2步,会出现domain不匹配的情况,导致SSL/TLS握手不成功。

1.2 SNI

SNI(Server Name Indication)是为了解决一个服务器使用多个域名和证书的SSL/TLS扩展。它的工作原理如下:

  1. 在连接到服务器建立SSL链接之前先发送要访问站点的域名(Hostname)。
  2. 服务器根据这个域名返回一个合适的证书。

目前,大多数操作系统和浏览器都已经很好地支持SNI扩展,OpenSSL 0.9.8也已经内置这一功能。

上述过程中,当客户端使用“IP直连”时,请求URL中的host会被替换成解析出来的IP,导致服务器获取到的域名为解析后的IP,无法找到匹配的证书,只能返回默认的证书或者不返回,所以会出现SSL/TLS握手不成功的错误。

比如当你需要通过 HTTPS 访问 CDN 资源时,CDN 的站点往往服务了很多的域名,所以需要通过SNI指定具体的域名证书进行通信。

2. HTTPS场景(非SNI)解决方案

针对“domain不匹配”问题,可以采用如下方案解决:hook 证书校验过程中第2步,将IP直接替换成原来的域名,再执行证书验证。该方案与使用“自定义证书”进行 HTTPS 请求的校验方案一样。

【注意】基于该方案发起网络请求,若报出SSL校验错误,比如 iOS 系统报错kCFStreamErrorDomainSSL, -9813; The certificate for this server is invalid,Android系统报错System.err: javax.net.ssl.SSLHandshakeException: java.security.cert.CertPathValidatorException: Trust anchor for certification path not found.,请检查应用场景是否为SNI(单IP多HTTPS域名)。

下面分别列出 iOS 平台的示例代码。

iOS示例

此示例针对NSURLSession/NSURLConnection接口。

- (BOOL)evaluateServerTrust:(SecTrustRef)serverTrust
                  forDomain:(NSString *)domain
{
    /*
     * 创建证书校验策略
     */
    NSMutableArray *policies = [NSMutableArray array];
    if (domain) {
        [policies addObject:(__bridge_transfer id)SecPolicyCreateSSL(true, (__bridge CFStringRef)domain)];
    } else {
        [policies addObject:(__bridge_transfer id)SecPolicyCreateBasicX509()];
    }
    
    /*
     * 绑定校验策略到服务端的证书上
     */
    SecTrustSetPolicies(serverTrust, (__bridge CFArrayRef)policies);
    
    
    /*
     * 评估当前serverTrust是否可信任,
     * 官方建议在result = kSecTrustResultUnspecified 或 kSecTrustResultProceed
     * 的情况下serverTrust可以被验证通过,https://developer.apple.com/library/ios/technotes/tn2232/_index.html
     * 关于SecTrustResultType的详细信息请参考SecTrust.h
     */
    SecTrustResultType result;
    SecTrustEvaluate(serverTrust, &result);
    
    return (result == kSecTrustResultUnspecified || result == kSecTrustResultProceed);
}

/*
 * NSURLConnection
 */
- (void)connection:(NSURLConnection *)connection
willSendRequestForAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge
{
    if (!challenge) {
        return;
    }
    
    /*
     * URL里面的host在使用“IP直连”的情况下被设置成了IP,此处从HTTP Header中获取真实域名
     */
    NSString* host = [[self.request allHTTPHeaderFields] objectForKey:@"host"];
    if (!host) {
        host = self.request.URL.host;
    }
    
    /*
     * 判断challenge的身份验证方法是否是NSURLAuthenticationMethodServerTrust(HTTPS模式下会进行该身份验证流程),
     * 在没有配置身份验证方法的情况下进行默认的网络请求流程。
     */
    if ([challenge.protectionSpace.authenticationMethod isEqualToString:NSURLAuthenticationMethodServerTrust])
    {
        if ([self evaluateServerTrust:challenge.protectionSpace.serverTrust forDomain:host]) {
            /*
             * 验证完以后,需要构造一个NSURLCredential发送给发起方
             */
            NSURLCredential *credential = [NSURLCredential credentialForTrust:challenge.protectionSpace.serverTrust];
            [[challenge sender] useCredential:credential forAuthenticationChallenge:challenge];
        } else {
            /*
             * 验证失败,进入默认处理流程
             */
            [[challenge sender] continueWithoutCredentialForAuthenticationChallenge:challenge];
        }
    } else {
        /*
         * 对于其他验证方法直接进行处理流程
         */
        [[challenge sender] continueWithoutCredentialForAuthenticationChallenge:challenge];
    }
}

////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////

/*
 * NSURLSession
 */
- (void)URLSession:(NSURLSession *)session task:(NSURLSessionTask *)task
didReceiveChallenge:(NSURLAuthenticationChallenge *)challenge
 completionHandler:(void (^)(NSURLSessionAuthChallengeDisposition disposition, NSURLCredential * __nullable credential))completionHandler
{
    if (!challenge) {
        return;
    }
    
    NSURLSessionAuthChallengeDisposition disposition = NSURLSessionAuthChallengePerformDefaultHandling;
    NSURLCredential *credential = nil;
    
    /*
     * 获取原始域名信息。
     */
    NSString* host = [[self.request allHTTPHeaderFields] objectForKey:@"host"];
    if (!host) {
        host = self.request.URL.host;
    }
    
    if ([challenge.protectionSpace.authenticationMethod isEqualToString:NSURLAuthenticationMethodServerTrust]) {
        if ([self evaluateServerTrust:challenge.protectionSpace.serverTrust forDomain:host]) {
            disposition = NSURLSessionAuthChallengeUseCredential;
            credential = [NSURLCredential credentialForTrust:challenge.protectionSpace.serverTrust];
        } else {
            disposition = NSURLSessionAuthChallengePerformDefaultHandling;
        }
    } else {
        disposition = NSURLSessionAuthChallengePerformDefaultHandling;
    }
    // 对于其他的challenges直接使用默认的验证方案
    completionHandler(disposition,credential);
}

需要修改HOST的场景总结

那么什么时候需要修改Host?

答案是所有情况都需要设置 HOST:做网络请求时,采用 IP 直连的方案会遇到 HOST 字段被改为 IP 的问题,所以都需要手动地配置 HOST 字段。

场景 HTTP HTTPS(非SNI) HTTPS(SNI)
如何设置 改Host 改Host,在移动端我们自己校验,直接返回YES 改HOST,而且需要做SNI适配。

虽然 IP 直接连的方案,导致的结果是 HOST 字段被改为了IP,所以需要手动修改HOST。但是服务端唯一的根据是SNI字段。下面就介绍下针对 SNI 场景的方案:

3. HTTPS(SNI)场景方案

3.1 iOS SNI场景

SNI(单IP多HTTPS证书)场景下,iOS上层网络库NSURLConnection/NSURLSession没有提供接口进行SNI字段的配置,因此需要Socket层级的底层网络库例如CFNetwork,来实现IP直连网络请求适配方案。而基于CFNetwork的解决方案需要开发者考虑数据的收发、重定向、解码、缓存等问题(CFNetwork是非常底层的网络实现),希望开发者合理评估该场景的使用风险。
可参考:

具体的实现方案可以参考: 《防 DNS 污染方案调研----- SNI 场景》

相关文章
|
8月前
|
安全 算法 网络协议
解析:HTTPS通过SSL/TLS证书加密的原理与逻辑
HTTPS通过SSL/TLS证书加密,结合对称与非对称加密及数字证书验证实现安全通信。首先,服务器发送含公钥的数字证书,客户端验证其合法性后生成随机数并用公钥加密发送给服务器,双方据此生成相同的对称密钥。后续通信使用对称加密确保高效性和安全性。同时,数字证书验证服务器身份,防止中间人攻击;哈希算法和数字签名确保数据完整性,防止篡改。整个流程保障了身份认证、数据加密和完整性保护。
|
9月前
|
数据可视化 前端开发 测试技术
接口测试新选择:Postman替代方案全解析
在软件开发中,接口测试工具至关重要。Postman长期占据主导地位,但随着国产工具的崛起,越来越多开发者转向更适合中国市场的替代方案——Apifox。它不仅支持中英文切换、完全免费不限人数,还具备强大的可视化操作、自动生成文档和API调试功能,极大简化了开发流程。
|
7月前
|
存储 弹性计算 安全
阿里云服务器ECS通用型规格族解析:实例规格、性能基准与场景化应用指南
作为ECS产品矩阵中的核心序列,通用型规格族以均衡的计算、内存、网络和存储性能著称,覆盖从基础应用到高性能计算的广泛场景。通用型规格族属于独享型云服务器,实例采用固定CPU调度模式,实例的每个CPU绑定到一个物理CPU超线程,实例间无CPU资源争抢,实例计算性能稳定且有严格的SLA保证,在性能上会更加稳定,高负载情况下也不会出现资源争夺现象。本文将深度解析阿里云ECS通用型规格族的技术架构、实例规格特性、最新价格政策及典型应用场景,为云计算选型提供参考。
|
7月前
|
人工智能 自然语言处理 算法
DeepSeek大模型在客服系统中的应用场景解析
在数字化浪潮下,客户服务领域正经历深刻变革,AI技术成为提升服务效能与体验的关键。DeepSeek大模型凭借自然语言处理、语音交互及多模态技术,显著优化客服流程,提升用户满意度。它通过智能问答、多轮对话引导、多模态语音客服和情绪监测等功能,革新服务模式,实现高效应答与精准分析,推动人机协作,为企业和客户创造更大价值。
629 5
|
8月前
|
缓存 安全 网络安全
代理协议解析:如何根据需求选择HTTP、HTTPS或SOCKS5?
本文详细介绍了HTTP、HTTPS和SOCKS5三种代理协议的特点、优缺点以及适用场景。通过对比和分析,可以根据具体需求选择最合适的代理协议。希望本文能帮助您更好地理解和应用代理协议,提高网络应用的安全性和性能。
416 17
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
企业级API集成方案:基于阿里云函数计算调用DeepSeek全解析
DeepSeek R1 是一款先进的大规模深度学习模型,专为自然语言处理等复杂任务设计。它具备高效的架构、强大的泛化能力和优化的参数管理,适用于文本生成、智能问答、代码生成和数据分析等领域。阿里云平台提供了高性能计算资源、合规与数据安全、低延迟覆盖和成本效益等优势,支持用户便捷部署和调用 DeepSeek R1 模型,确保快速响应和稳定服务。通过阿里云百炼模型服务,用户可以轻松体验满血版 DeepSeek R1,并享受免费试用和灵活的API调用方式。
518 12
|
8月前
|
存储 人工智能 并行计算
2025年阿里云弹性裸金属服务器架构解析与资源配置方案
🚀 核心特性与技术创新:提供100%物理机性能输出,支持NVIDIA A100/V100 GPU直通,无虚拟化层损耗。网络与存储优化,400万PPS吞吐量,ESSD云盘IOPS达100万,RDMA延迟<5μs。全球部署覆盖华北、华东、华南及海外节点,支持跨地域负载均衡。典型应用场景包括AI训练、科学计算等,支持分布式训练和并行计算框架。弹性裸金属服务器+OSS存储+高速网络综合部署,满足高性能计算需求。
|
9月前
|
机器学习/深度学习 传感器 人工智能
穹彻智能-上交大最新Nature子刊速递:解析深度学习驱动的视触觉动态重建方案
上海交大研究团队在Nature子刊发表论文,提出基于深度学习的视触觉动态重建方案,结合高密度可拉伸触觉手套与视觉-触觉联合学习框架,实现手部与物体间力量型交互的实时捕捉和重建。该方案包含1152个触觉感知单元,通过应变干扰抑制方法提高测量准确性,平均重建误差仅1.8厘米。实验结果显示,其在物体重建的准确性和鲁棒性方面优于现有方法,为虚拟现实、远程医疗等领域带来新突破。
209 32
|
9月前
|
存储 人工智能 NoSQL
Tablestore深度解析:面向AI场景的结构化数据存储最佳实践
《Tablestore深度解析:面向AI场景的结构化数据存储最佳实践》由阿里云专家团队分享,涵盖Tablestore十年发展历程、AI时代多模态数据存储需求、VCU模式优化、向量检索发布及客户最佳实践等内容。Tablestore支持大规模在线数据存储,提供高性价比、高性能和高可用性,特别针对AI场景进行优化,满足结构化与非结构化数据的统一存储和高效检索需求。通过多元化索引和Serverless弹性VCU模式,助力企业实现低成本、灵活扩展的数据管理方案。
421 12
|
9月前
|
存储 缓存 人工智能
深度解析CPFS 在 LLM 场景下的高性能存储技术
本文深入探讨了CPFS在大语言模型(LLM)训练中的端到端性能优化策略,涵盖计算端缓存加速、智能网卡加速、数据并行访问及数据流优化等方面。重点分析了大模型对存储系统的挑战,包括计算规模扩大、算力多样性及数据集增长带来的压力。通过分布式P2P读缓存、IO加速、高性能存算通路技术以及智能数据管理等手段,显著提升了存储系统的吞吐量和响应速度,有效提高了GPU利用率,降低了延迟,从而加速了大模型的训练进程。总结了CPFS在AI训练场景中的创新与优化实践,为未来大模型发展提供了有力支持。