ARM公司公布CPU与GPU更新计划——一切为了AI

简介:

芯片设计厂商ARM公司于本周一公布其基于DynamIQ微处理器架构的第一波处理器产品,同时亦提到经过调整的GPU芯片设计方案。

ARM公司公布CPU与GPU更新计划——全部针对AI用例进行调整

ARM公司产品营销负责人John Ronco在接受电话采访时解释称,DynamIQ代表着“一种新的CPU整合方式,其能够提供更多配置选项,旨在更为灵活地实现CPU对接。”

Ronco介绍称,这项技术允许各计算核心以不同尺寸形式存在。此举相当于对2011年首次出台的big.LITTLE架构(其中各核心以分组形式存在,且不同分组间允许存在规模差异)进行扩展,且具备一系列潜在优势。举例来说,包含一个大型计算核心与七个小型计算核心的芯片能够利用较小核心执行持续性计算任务,而较大核心则面向性能密集型应用需求。

Ronco进一步解释道,“DynamIQ是一种新的计算核心拼接方式。在它的帮助下,您将能够对各计算核心进行混合与匹配,从而在自有设计方案中实现更多可能性。我们期待着看到更多用户将其中的大型计算核心引入各类中端设备之内。”

使用这种芯片架构设计的最初两款CPU分别为ARM Cortex-A75Cortex-A55,二者将于2018年第一季度开始逐步出现在各硬件制造商发布的设备当中。

Cortex-A75专为性能而生,这套设计方案可用于旗舰级手机设备、其它计算设备、基础设施以及车载系统芯片等等。根据ARM公司的说法,在主频为3 GHz的情况下,其SPECint 2006基准测试成绩可在运行速度方面超过原有Cortex-A73 50%以上。

Cortex-A55则面向效率进行调整。“其拥有极为强大的能源效率与成本效率,”Ronco指出,他同时预计这款芯片将被用于众多中端手机设备。

Ronco强调称,A55的上代产品A53已经成为目前普及范围最广的64CPU方案。

ARM公司宣称,16纳米制程的A55处理器相较于前代28纳米A53处理器,能够将能源效率提升达50%

Ronco解释道,“对于手机而言,由于其所能够提供的电池续航能力非常有限,因此持续使用时长对于用户来说可谓至关重要。”

Mali-G72 GPU

ARM公司还计划公布Mali-G72图形处理单元,以作为其Mali-G71的换代方案。该公司指出,其去年总计售出10亿块GPU,大约相当于2014年出货量的两倍。

G72针对图形密集型移动游戏、移动VR以及手机内机器学习等负载类型进行了优化,ARM公司产品营销主管Anand Patel表示。

根据Ronco的解释,目前正有越来越多的客户对于AI以及机器学习等方向抱有浓厚兴趣。“这在一定程度上改变了我们所处理的计算任务种类。”

最新的Mali设计当中包含用于强化机器学习计算能力的优化机制。举例来说,其通用矩阵到矩阵乘法(简称GEMM)计算的能源效率提升了17%

在接受电话采访时,咨询企业IDC公司分析师Abhi Dugar表示,AI类应用对于高通等大型ARM客户已经变得非常重要。



原文发布时间为: 2017年5月31日

本文作者:孙博

本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
20天前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
1月前
|
监控 异构计算
Jetson 学习笔记(八):htop查看CPU占用情况和jtop监控CPU和GPU
在NVIDIA Jetson平台上使用htop和jtop工具来监控CPU、GPU和内存的使用情况,并提供了安装和使用这些工具的具体命令。
122 0
|
27天前
|
机器学习/深度学习 人工智能 并行计算
CPU和GPU的区别
【10月更文挑战第14天】
|
27天前
|
机器学习/深度学习 人工智能 缓存
GPU加速和CPU有什么不同
【10月更文挑战第20天】GPU加速和CPU有什么不同
47 1
|
1月前
|
人工智能 安全 芯片
【通义】AI视界|谷歌 Tensor G5 芯片揭秘:1+5+2 八核 CPU,支持光线追踪
本文由【通义】自动生成,涵盖黄仁勋宣布台积电协助修复Blackwell AI芯片设计缺陷、苹果分阶段推出Apple Intelligence、OpenAI保守派老将辞职、英伟达深化与印度合作推出印地语AI模型,以及谷歌Tensor G5芯片支持光线追踪等最新科技资讯。点击链接或扫描二维码,获取更多精彩内容。
|
1月前
|
机器学习/深度学习 弹性计算 编解码
阿里云服务器计算架构X86/ARM/GPU/FPGA/ASIC/裸金属/超级计算集群有啥区别?
阿里云服务器ECS提供了多种计算架构,包括X86、ARM、GPU/FPGA/ASIC、弹性裸金属服务器及超级计算集群。X86架构常见且通用,适合大多数应用场景;ARM架构具备低功耗优势,适用于长期运行环境;GPU/FPGA/ASIC则针对深度学习、科学计算、视频处理等高性能需求;弹性裸金属服务器与超级计算集群则分别提供物理机级别的性能和高速RDMA互联,满足高性能计算和大规模训练需求。
|
2月前
|
人工智能 自然语言处理 文字识别
MinerU-大语言语料处理神器,CPU/GPU均可跑,开源免费“敲”好用
在7月4日举行的WAIC 2024科学前沿主论坛上,书生·浦语2.5正式发布,面向大模型研发与应用的全链条工具体系同时迎来升级。
MinerU-大语言语料处理神器,CPU/GPU均可跑,开源免费“敲”好用
|
2月前
|
机器学习/深度学习 人工智能 算法
AI计算机视觉笔记十一:yolo5+Deepsort实现目标检测与跟踪(CPU版)
DeepSORT是一种基于深度学习的计算机视觉跟踪算法,扩展了SORT算法,通过添加外观描述符减少身份切换,提高跟踪效率。本文档提供了DeepSORT环境搭建步骤,包括创建虚拟环境、安装依赖及解决常见错误等,最终实现人员和车辆的跟踪计数功能。适合无GPU设备的学习者参考。
|
3月前
|
机器学习/深度学习 人工智能 并行计算
【人工智能】CPU、GPU与TPU:人工智能领域的核心处理器概述
在人工智能和计算技术的快速发展中,CPU(中央处理器)、GPU(图形处理器)和TPU(张量处理器)作为核心处理器,各自扮演着不可或缺的角色。它们不仅在性能上各有千秋,还在不同的应用场景中发挥着重要作用
210 2
|
3月前
|
人工智能 PyTorch 算法框架/工具
AI计算机视觉笔记二:基于YOLOV5的CPU版本部署openvino
本文档详细记录了YOLOv5模型在CPU环境下的部署流程及性能优化方法。首先,通过设置Python虚拟环境并安装PyTorch等依赖库,在CPU环境下成功运行YOLOv5模型的示例程序。随后,介绍了如何将PyTorch模型转换为ONNX格式,并进一步利用OpenVINO工具包进行优化,最终实现模型在CPU上的高效运行。通过OpenVINO的加速,即使是在没有GPU支持的情况下,模型的推理速度也从约20帧每秒提高到了50多帧每秒,显著提升了性能。此文档对希望在资源受限设备上部署高性能计算机视觉模型的研究人员和工程师具有较高的参考价值。
下一篇
无影云桌面