亚洲信贷监察:数据分析让应收账款管理更智能

简介:

应收账款管理是一个复杂且多样化的问题,现在,在可靠的分析技术支持下,应收账款管理逐渐成为了可高效运作的业务。

亚洲信贷监察是最早的信用管理服务的提供者之一,在香港本地及其他亚洲国家和地区进行应收账款管理,致力于通过数据分析筛选具有较高还款能力的债务人,进而从操作的角度上增加应收账款管理的成功率,从长远角度提高整体业务的效率。

在部署SAS解决方案之前,亚洲信贷监察遇到了影响其业绩的几个难点,其中最大的挑战就是可用数据的分布十分零散,其不具备对这些数据的进行全面分析的能力。除此之外,因为不同的项目需要不同的资源配置,而对优先性的排序主要靠操作人员的专业知识和过往经验,因此会出现一些效率低下、资源配置不当的情况。

经过评估后,亚洲信贷监察与SAS香港密切合作进行项目的实施,利用SAS为公司的应收业务量身定做的整体解决方案,构建了数据模型,从而成功地提高了运营效率。

亚洲信贷监察(控股)有限公司行政总裁兼执行董事黄镜兴表示:“这个项目的实施只用了三个月,结果令人振奋。SAS通过其卓越的技术能力和专业知识,将分析与我们的业务相结合。我们运用SAS模型来支持整个应收业务流程,帮助我们从整体上认知债务人。例如,SAS 企业级数据挖掘器(SAS Enterprise Miner)的描述和预测建模提供的洞察观点,能帮助我们做出更好的决策,SAS可视化分析(SAS Visual Analytics)也有助于我们用更智能、更快速、更简便的方法,直观地探索所有相关数据。”

黄镜兴对该项目的实施成果很满意:“SAS在数据分析方面实力强大,是高级分析和商业智能领域公认的市场领导者。SAS向我们提供了一种更科学的方法,改变了我们之前主要依靠操作人员的经验去判断支付行为以及债务人支付拖欠货款的可能性的状况。我们相信,在这个数据驱动的商业世界,部署SAS分析解决方案让我们的应收业务更智能、更有效。”






原文发布时间为:2016年10月17日 
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
目录
相关文章
|
8月前
|
SQL 人工智能 数据挖掘
阿里云DMS,身边的智能化数据分析助手
生成式AI颠覆了人机交互的传统范式,赋予每个人利用AI进行低门槛数据分析的能力。Data Fabric与生成式AI的强强联合,不仅能够实现敏捷数据交付,还有效降低了数据分析门槛,让人人都能数据分析成为可能!阿里云DMS作为阿里云统一的用数平台,在2021年初就开始探索使用Data Fabric理念构建逻辑数仓来加速企业数据价值的交付,2023年推出基于大模型构建的Data Copilot,降低用数门槛,近期我们将Notebook(分析窗口)、逻辑数仓(Data Fabric)、Data Copilot(生成式AI)进行有机组合,端到端的解决用数难题,给用户带来全新的分析体验。
111619 120
阿里云DMS,身边的智能化数据分析助手
|
4天前
|
安全 数据挖掘 BI
欢迎使用Quick BI,开启您的智能数据分析之旅!
欢迎选择Quick BI作为您的数据分析伙伴!本文将为您介绍一个月全功能免费试用教程,帮助您轻松上手。请确保在PC环境下操作。
53 5
|
8月前
|
人工智能 数据挖掘 机器人
【python】python智能停车场数据分析(代码+数据集)【独一无二】
【python】python智能停车场数据分析(代码+数据集)【独一无二】
244 0
|
8月前
|
存储 分布式计算 搜索推荐
【专栏】数据之海,分布式计算、数据存储与管理、数据分析与挖掘成为关键技术
【4月更文挑战第27天】在大数据时代,数据量爆炸性增长、类型多样及处理速度需求提升带来挑战。分布式计算、数据存储与管理、数据分析与挖掘成为关键技术,如Hadoop、Spark、HDFS、NoSQL等。实际应用包括互联网搜索、推荐系统、金融科技、智能城市等领域,大规模数据处理发挥关键作用,持续推动创新与奇迹。
175 3
|
8月前
|
机器学习/深度学习 数据采集 算法
Python用逻辑回归、决策树、SVM、XGBoost 算法机器学习预测用户信贷行为数据分析报告
Python用逻辑回归、决策树、SVM、XGBoost 算法机器学习预测用户信贷行为数据分析报告
|
4月前
|
存储 算法 数据挖掘
高效文本处理新纪元:Python后缀树Suffix Tree,让数据分析更智能!
在大数据时代,高效处理和分析文本信息成为关键挑战。后缀树作为一种高性能的数据结构,通过压缩存储字符串的所有后缀,实现了高效的字符串搜索、最长公共前缀查询等功能,成为文本处理的强大工具。本文探讨Python中后缀树的应用,展示其在文本搜索、重复内容检测、最长公共子串查找、文本压缩及智能推荐系统的潜力,引领数据分析迈入新纪元。虽然Python标准库未直接提供后缀树,但通过第三方库或自定义实现,可轻松利用其强大功能。掌握后缀树,即掌握开启文本数据宝藏的钥匙。
62 5
|
6月前
|
机器学习/深度学习 数据采集 数据挖掘
智能决策新引擎:Python+Scikit-learn,打造高效数据分析与机器学习解决方案!
【7月更文挑战第26天】在数据驱动时代,企业需从大数据中提取价值以精准决策。Python凭借丰富的库成为数据分析利器,而Scikit-learn作为核心工具备受青睐。本文通过电商案例展示如何预测潜在买家以实施精准营销。首先进行数据预处理,包括清洗、特征选择与转换;接着采用逻辑回归模型进行训练与预测;最后评估模型并优化。此方案显著提升了营销效率和企业决策能力,预示着智能决策系统的广阔前景。
107 2
|
6月前
|
人工智能 算法 数据挖掘
高效文本处理新纪元:Python后缀树Suffix Tree,让数据分析更智能!
【7月更文挑战第20天】后缀树是文本处理的关键工具,它在Python中虽需第三方库支持(如pysuffixtree),但能高效执行搜索、重复内容检测等任务。应用于文本搜索、重复内容检测、生物信息学、文本压缩及智能推荐系统。随着AI和大数据发展,后缀树将在更多领域展现潜力,助力数据分析智能化和高效化。学习和利用后缀树,对于驾驭海量文本数据至关重要。**
55 1
|
8月前
|
人工智能 自然语言处理 数据挖掘
产品更新|宜搭AI 新增「智能数据分析」「智能表单」两项功能!
「宜搭AI」开放新一期功能:智能数据分析、智能表单,已支持在宜搭网页端使用体验。
508 0
产品更新|宜搭AI 新增「智能数据分析」「智能表单」两项功能!
|
6月前
|
数据挖掘 数据处理 决策智能
Python 数据分析工具箱:深挖 Pandas 与 NumPy 高级功能,驱动智能决策
【7月更文挑战第12天】Python的Pandas和NumPy是数据分析的基石。Pandas提供灵活的数据结构如DataFrame,用于高效处理关系型数据,而NumPy则以多维数组和科学计算功能著称。两者结合,支持数据合并(如`pd.merge`)、时间序列分析(`pd.to_datetime`)和高级数组运算。通过掌握它们的高级特性,能提升数据分析效率,应用于各领域,如金融风险评估、市场分析和医疗预测,助力数据驱动的决策。学习和熟练运用Pandas与NumPy是成为出色数据分析师的关键。
64 0