亚信数据吴岸城:保险行业大数据应用

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
数据安全中心,免费版
简介:

ZDNet至顶网软件频道消息: 随着国家经济创新的不断深入及个人财富增值的需求,保险作为一种综合理财行为逐渐成为消费者关注的重点,在“互联网+、大数据”的冲击下,作为传统的金融行业,中国的保险销售模式正在酝酿新的变革。

为用户塑造合适的购买场景

一个西装革履的保险经纪人顶着烈日、口干舌燥地描述着生活中可能遇到的各种意外,以及购买保险产品所带来的保障和额外收益,但是最终得到的往往是用户的果断拒绝,甚至是白眼和冷言冷语,运营成本居高不下,成功率却很低。

上面就是传统保险行业推广中常见的场景,并不是客户不通人情,而是保险经纪人没有了解潜在客户的需求,没有针对性地为客户解决个性化问题,没有用简洁易懂的话语和恰当的方式与用户进行沟通。如果去问传统保险行业的销售人员,保险销售最关键的问题是什么?想必得到的答案会非常统一:为用户塑造合适的购买场景。

这个问题的解决对于传统保险行业来说的确是一个很大的挑战,但是互联网保险的兴起,可以让这个问题变得简单。

众诺平台助力精准营销

随着发展趋势的日益明显,面对这个机遇众多的领域,越来越多的互联网保险平台如雨后春笋般兴起,其中,依托于亚信数据保险金融业解决方案部,正在开发中的众诺平台,显现出了独有的竞争力。亚信资深技术专家吴岸城先生说:“众诺设计之初,就打算结合公司已积累的丰富的渠道商和保险公司资源,做一个线上运营平台,与众不同的是众诺将依托亚信数据的技术和解决方案资源为保险公司做出更加精准的营销,同时将互联网思维进行到底,关注用户个性化需求,以用户为主导,创新模式。”

亚信过去20年里以致力于为全球信息服务运营商提供高效的IT解决方案和服务为己任,帮助运营商实现互联网化,积累了大量的数据资源和扎实的技术基础,再加上亚信数据雄厚的大数据加工和处理的技术优势,相信众诺平台将会助力保险公司进行更加精准的产品营销,从用户需求出发,塑造合适的用户场景,真正实现个性化服务。

亚信数据吴岸城:保险行业大数据应用

自主研发为保险业定制

对于大数据在保险行业基本的应用范围,吴岸城先生认为:现今我们所看到的各种传感器、定位装置都是一种可以将现实事物或行为具象化的设备,通过多种多样的设备,将数据收集上来,然后进行处理分析,我们就能发现不同用户的个性化需求,对客户进行精准营销,针对性服务,最后可以通过数据分析每一个人的行为风险度,做出预测,制定出更合理的保费,让保险公司更加有效地规避风险,并对欺诈行为进行鉴别,分析出什么时候,什么地方最容易产生欺诈,提前防卫,做好反欺诈的相关工作,这对于保险行业的良性发展是非常必要的。

在实现大数据应用的技术层面,深度学习和算法的优化是必不可少的。当2006年DBN优化算法做好之后,许多公司开始了深度学习方面的研究。而这些研究成果则会直接体现在智能客服的产品之中。微软实验室的小冰和苹果的Siri都受到业界的好评,除此之外,一些新兴的互联网公司也纷纷涉足智能客服业务。

在看似已经成熟的市场环境下,亚信数据依然选择了自主研发。吴岸城先生告诉记者:“其他公司推出的一些通用性产品,虽然在生活领域可以做的很好,但到了保险、金融领域,当涉及到一些核心业务,比如承保、理赔、投保的时候,就显得力不从心,因此我觉得在深入了解保险行业的发展现状和趋势之后,针对具体的情况,自己去开发这个东西更好一些。”

技术积累保障数据安全

大数据本身固有的特征可以用4个“V”来概括——Volume(数据体量巨大)、Variety(数据类型繁多)、Value(价值密度低)、 Velocity(处理速度快)。亚信作为一家全运营商业务的公司,在数据处理方面有着得天独厚的优势。举个例子来说,运营商每天要收集用户的上网流量,进行分析,数据量大概是50PB,这个级别是现今所有数据库都做不到的,所以它的底层采用了Hadoop去做,上层运用流式计算,这些数据的存储和分析都是由亚信参与规划和建设的,在其中积累了丰富的经验。

吴岸城先生说道:“大数据处理中涉及到分布式和并行计算,亚信在运营商层面已经有很好的应用和实践了。包括现在流行的OpenStack和Docker,亚信有社区的Committer,技术团队会非常快速的融入开源社区,将新技术迅速融入到业务中去。”

大数据给企业带来价值的同时,也会引入新的安全威胁。随着支付宝、携程等大公司数据安全事故频发, 企业在大数据应用前首先要考虑数据安全威胁。

吴岸城先生认为:在这方面,亚信有一套成熟的产品线进行支撑,虽然内部称它为BI,实际上它除了BI之外,还包括前端ETL抽取、分布式等,此外我们就OpenStack组件也做了一些源码级的修改,让它更好地融入到整个安全体系当中去,在云上面构建一个安全的防护体系。

数据隐私是数据安全的一个子集,运营商对于数据隐私的要求同样非常严格,因此亚信在原来的业务层面有一个4A的管理系统,后面配有堡垒机。就像吴岸城先生介绍所说:“开始我们就要做一些主动防御的事,为数据安全保驾护航,将风险降低到最小。”

结语

随着国家层面对于保险行业的关注和人们生活水平的提高,保险业的繁荣已经是板上钉钉的事情,而IT技术必然会伴随其未来的整个发展过程,成为其最大的助力和关键所在。当“互联网+”的概念日益深入,BAT相继布局互联网金融,市场上早已波涛汹涌。相比于金融行业的其他分支,保险行业就像一条暗河,看似落花流水平常心,却早已风雨无晴。被誉为“中国互联网建筑师”的亚信,也早已深耕于大数据行业,成立亚信数据,力求通过大数据为“互联网+保险”保驾护航,让互联网保险满足越来越多客户的个性化需求,越来越任性。

原文发布时间为:2015年8月4日
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
14天前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
52 1
|
2天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
26 7
|
2天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
10 2
|
9天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
21 3
|
9天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
31 2
|
12天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
41 2
|
14天前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
46 2
|
16天前
|
存储 安全 大数据
大数据隐私保护:用户数据的安全之道
【10月更文挑战第31天】在大数据时代,数据的价值日益凸显,但用户隐私保护问题也愈发严峻。本文探讨了大数据隐私保护的重要性、面临的挑战及有效解决方案,旨在为企业和社会提供用户数据安全的指导。通过加强透明度、采用加密技术、实施数据最小化原则、加强访问控制、采用隐私保护技术和提升用户意识,共同推动大数据隐私保护的发展。
|
20天前
|
SQL 存储 大数据
大数据中数据提取
【10月更文挑战第19天】
43 2
|
29天前
|
NoSQL 大数据 测试技术
想从事大数据方向职场小白看过来, 数据方面的一些英文解释
想从事大数据方向职场小白看过来, 数据方面的一些英文解释
33 0