大数据时代留给数据分析师的羁绊

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

大数据搭着信息时代的快车来到了我们的面前,数据的价值逐渐为人们所重视,同时也让数据分析师的身价倍增。而随着大数据分析工具等大数据应用技术的出现,未来的数据分析师又将遇到怎样的挑战和机遇呢?

工具抢了人的饭碗?

很多大数据分析工具的设计起点非常高,定位了数据分析过程中所需要的大部分功能。很多工具的功能涵盖了从数据前期整合、收集到挖掘、分析乃至末端的数据可视化的整个数据分析过程,功能不可谓不强大。

但如果仅凭这些就认定大数据分析工具能取代数据分析师,未免有些杞人忧天了。恰恰相反,大数据分析工具不是数据分析师的竞争者,而是协助者。工具本来就是为人服务的,数据分析师的专业素养让其能很好的发挥大数据分析工具的性能,二者相辅相成,是友非敌。

企业的支持

虽然大数据的概念已经普及,但是很多企业还是留存有一些传统的观念。很多企业虽然重金聘用了数据分析师甚至是组建了数据分析师团队,但是却并没有建立完善的数据价值体系。对数据分析工作缺乏理解与支持。

大数据时代留给数据分析师的羁绊

相对于数据管理,数据分析工的工作重心还应该放在“挖掘数据价值”上。企业与数据分析师直接缺少职能的沟通,将直接影响企业对数据分析师工作性质的定位;同时,企业应该建立数据库并部署大数据分析工具,为了能更好地对接用户,大数据魔镜在功能桥接上,也为企业和数据分析师留有足够的空间。

从幕后到台前的转变

以往的业务人员经常要磨破嘴皮才能得到别人的认同,而现在许多企业正在考虑让数据分析师带着数据分析结果去谈业务。打算以“让数据说话,以数据服人”去赢得客户的信任。而主要的实施过程,是靠数据可视化技术来实现的。

大数据时代留给数据分析师的羁绊

数据可视化技术让数据能以图表和视频的方式直观地展示在人们面前,而数据分析师作为数据的管理者和挖掘者,是最适合不过的讲解人了。这样就要求数据分析师不仅要有扎实的数据分析能力,还要能提取数据精髓,并将之演讲出来以获得他人的认同。从幕后转到台前,这里面会需要许多技能,数据分析师的工作性质也将发生改变。

在大数据时代,数据分析师所扮演的角色不可能是一成不变的。而只有顺应时代的潮流,响应时代的需要,数据分析师这个行业才能继续生存并发展。其实,大数据分析工具,数据可视化这些技术的出现固然使行业受到了影响与挑战,但对于数据分析师来说,未尝不是一次摆脱传统束缚的机遇!


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
5月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
104 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
2月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
4月前
|
机器学习/深度学习 数据挖掘 大数据
大数据时代的“淘金术”:Python数据分析+深度学习框架实战指南
在大数据时代,数据被视为新财富源泉,而从海量信息中提取价值成为企业竞争的核心。本文通过对比方式探讨如何运用Python数据分析与深度学习框架实现这一目标。Python凭借其强大的数据处理能力及丰富库支持,已成为数据科学家首选工具;而TensorFlow和PyTorch等深度学习框架则为复杂模型构建提供强有力的技术支撑。通过融合Python数据分析与深度学习技术,我们能在各领域中发掘数据的无限潜力。无论是商业分析还是医疗健康,掌握这些技能都将为企业和社会带来巨大价值。
146 6
|
5月前
|
存储 数据可视化 数据挖掘
大数据环境下的房地产数据分析与预测研究的设计与实现
本文介绍了一个基于Python大数据环境下的昆明房地产市场分析与预测系统,通过数据采集、清洗、分析、机器学习建模和数据可视化技术,为房地产行业提供决策支持和市场洞察,探讨了模型的可行性、功能需求、数据库设计及实现过程,并展望了未来研究方向。
258 4
大数据环境下的房地产数据分析与预测研究的设计与实现
|
5月前
|
Java Spring 安全
Spring 框架邂逅 OAuth2:解锁现代应用安全认证的秘密武器,你准备好迎接变革了吗?
【8月更文挑战第31天】现代化应用的安全性至关重要,OAuth2 作为实现认证和授权的标准协议之一,被广泛采用。Spring 框架通过 Spring Security 提供了强大的 OAuth2 支持,简化了集成过程。本文将通过问答形式详细介绍如何在 Spring 应用中集成 OAuth2,包括 OAuth2 的基本概念、集成步骤及资源服务器保护方法。首先,需要在项目中添加 `spring-security-oauth2-client` 和 `spring-security-oauth2-resource-server` 依赖。
62 0
|
5月前
|
消息中间件 分布式计算 Kafka
MaxCompute 在实时数据分析中的角色
【8月更文第31天】随着大数据应用场景的不断扩展,对数据处理速度的要求越来越高,传统的批处理模式已经难以满足某些业务对实时性的需求。在这种背景下,实时数据处理成为了大数据领域的研究热点之一。阿里云的 MaxCompute 虽然主要用于离线数据处理,但通过与其他实时流处理系统(如 Apache Flink 或 Kafka Streams)的集成,也可以参与到实时数据分析中。本文将探讨 MaxCompute 在实时数据分析中的角色,并介绍如何将 MaxCompute 与 Flink 结合使用。
122 0
|
5月前
|
消息中间件 数据挖掘 Kafka
揭秘大数据时代的极速王者!Flink:颠覆性流处理引擎,让实时数据分析燃爆你的想象力!
【8月更文挑战第29天】Apache Flink 是一个高性能的分布式流处理框架,适用于高吞吐量和低延迟的实时数据处理。它采用统一执行引擎处理有界和无界数据流,具备精确状态管理和灵活窗口操作等特性。Flink 支持毫秒级处理和广泛生态集成,但学习曲线较陡峭,社区相对较小。通过实时日志分析示例,我们展示了如何利用 Flink 从 Kafka 中读取数据并进行词频统计,体现了其强大功能和灵活性。
98 0
|
5月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
97 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
102 4
数据分析的 10 个最佳 Python 库
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
258 4