大数据同步工具DataX与Sqoop之比较

简介:

DataX是一个在异构的数据库/文件系统之间高速交换数据的工具,实现了在任意的数据处理系统(RDBMS/Hdfs/Local filesystem)之间的数据交换,由淘宝数据平台部门完成。Sqoop是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。同样是大数据异构环境数据同步工具,二者有什么差别呢?本文转自Dean的博客。

从接触DataX起就有一个疑问,它和Sqoop到底有什么区别,昨天部署好了DataX和Sqoop,就可以对两者进行更深入的了解了。

两者从原理上看有点相似,都是解决异构环境的数据交换问题,都支持oracle,mysql,hdfs,hive的互相交换,对于不同数据库的支持都是插件式的,对于新增的数据源类型,只要新开发一个插件就好了,但是只细看两者的架构图,很快就会发现明显的不同。

DataX架构图

大数据同步工具DataX与Sqoop之比较

Job: 一道数据同步作业

Splitter: 作业切分模块,将一个大任务与分解成多个可以并发的小任务.

Sub-job: 数据同步作业切分后的小任务

Reader(Loader): 数据读入模块,负责运行切分后的小任务,将数据从源头装载入DataX

Storage: Reader和Writer通过Storage交换数据

Writer(Dumper): 数据写出模块,负责将数据从DataX导入至目的数据地

Sqoop架构图

大数据同步工具DataX与Sqoop之比较

大数据同步工具DataX与Sqoop之比较

DataX 直接在运行DataX的机器上进行数据的抽取及加载。

而Sqoop充分里面了map-reduce的计算框架。Sqoop根据输入条件,生成一个map-reduce的作业,在Hadoop的框架中运行。

从理论上讲,用map-reduce框架同时在多个节点上进行import应该会比从单节点上运行多个并行导入效率高。而实际的测试中也是如此,测试一个Oracle to hdfs的作业,DataX上只能看到运行DataX上的机器的数据库连接,而Sqoop运行时,4台task-tracker全部产生一个数据库连接。调起的Sqoop作业的机器也会产生一个数据库连接,应为需要读取数据表的一些元数据信息,数据量等,做分区。

Sqoop现在作为Apache的顶级项目,如果要我从DataX和Sqoop中间选择的话,我想我还是会选择Sqoop。而且Sqoop还有很多第三方的插件。早上使用了Quest开发的OraOop插件,确实像quest说的一样,速度有着大幅的提升,Quest在数据库方面的经验,确实比旁人深厚。

大数据同步工具DataX与Sqoop之比较
大数据同步工具DataX与Sqoop之比较

在我的测试环境上,一台只有700m内存的,IO低下的oracle数据库,百兆的网络,使用Quest的Sqoop插件在4个并行度的情况下,导出到HDFS速度有5MB/s ,这已经让我很满意了。相比使用原生Sqoop的2.8MB/s快了将近一倍,sqoop又比DataX的760KB/s快了两倍。

另外一点Sqoop采用命令行的方式调用,比如容易与我们的现有的调度监控方案相结合,DataX采用xml 配置文件的方式,在开发运维上还是有点不方便。

附图1.Sqoop with Quest oracle connector

大数据同步工具DataX与Sqoop之比较

大数据同步工具DataX与Sqoop之比较


本文作者:数控小V

来源:51CTO

相关文章
|
2月前
|
canal 消息中间件 关系型数据库
Canal作为一款高效、可靠的数据同步工具,凭借其基于MySQL binlog的增量同步机制,在数据同步领域展现了强大的应用价值
【9月更文挑战第1天】Canal作为一款高效、可靠的数据同步工具,凭借其基于MySQL binlog的增量同步机制,在数据同步领域展现了强大的应用价值
647 4
|
3月前
|
运维 监控 Unix
运维必看,Linux 远程数据同步工具详解。
运维必看,Linux 远程数据同步工具详解。
|
3月前
|
关系型数据库 MySQL 大数据
DataX:数据同步的超音速英雄!阿里开源工具带你飞越数据传输的银河系,告别等待和故障的恐惧!快来见证这一数据工程的奇迹!
【8月更文挑战第13天】DataX是由阿里巴巴开源的一款专为大规模数据同步设计的工具,在数据工程领域展现强大竞争力。它采用插件化架构,支持多种数据源间的高效迁移。相较于Apache Sqoop和Flume,DataX通过并发写入和流处理实现了高性能同步,并简化了配置流程。DataX还支持故障恢复,能够在同步中断后继续执行,节省时间和资源。这些特性使其成为构建高效可靠数据同步方案的理想选择。
309 2
|
4月前
|
监控 数据挖掘 大数据
阿里云开源利器:DataX3.0——高效稳定的离线数据同步解决方案
对于需要集成多个数据源进行大数据分析的场景,DataX3.0同样提供了有力的支持。企业可以使用DataX将多个数据源的数据集成到一个统一的数据存储系统中,以便进行后续的数据分析和挖掘工作。这种集成能力有助于提升数据分析的效率和准确性,为企业决策提供有力支持。
|
3月前
|
Java 关系型数据库 DataX
DATAX数据同步
DATAX数据同步
547 0
|
4月前
|
分布式计算 关系型数据库 MySQL
MySQL超时参数优化与DataX高效数据同步实践
通过合理设置MySQL的超时参数,可以有效地提升数据库的稳定性和性能。而DataX作为一种高效的数据同步工具,可以帮助企业轻松实现不同数据源之间的数据迁移。无论是优化MySQL参数还是使用DataX进行数据同步,都需要根据具体的应用场景来进行细致的配置和测试,以达到最佳效果。
|
3月前
|
数据采集 DataWorks 监控
DataWorks产品使用合集之数据集成并发数不支持批量修改,该怎么办
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
1月前
|
数据采集 DataWorks 数据管理
DataWorks不是Excel,它是一个数据集成和数据管理平台
【10月更文挑战第10天】随着大数据技术的发展,企业对数据处理的需求日益增长。阿里云推出的DataWorks是一款强大的数据集成和管理平台,提供从数据采集、清洗、加工到应用的一站式解决方案。本文通过电商平台案例,详细介绍了DataWorks的核心功能和优势,展示了如何高效处理大规模数据,帮助企业挖掘数据价值。
94 1
|
1月前
|
数据采集 SQL DataWorks
DataWorks不是Excel,它是一个数据集成和数据管理平台
【10月更文挑战第5天】本文通过一家电商平台的案例,详细介绍了阿里云DataWorks在数据处理全流程中的应用。从多源数据采集、清洗加工到分析可视化,DataWorks提供了强大的一站式解决方案,显著提升了数据分析效率和质量。通过具体SQL示例,展示了如何构建高效的数据处理流程,突显了DataWorks相较于传统工具如Excel的优势,为企业决策提供了有力支持。
93 3
|
2月前
|
存储 分布式计算 DataWorks
dataworks数据集成
dataworks数据集成
113 1

热门文章

最新文章

下一篇
无影云桌面