MyRocks之bloom filter

简介: --- title: MySQL · mysql · myrocks之Bloom filter author: 张远 --- # Bloom filter 简介 Bloom filter用于判断一个元素是不是在一个集合里,当一个元素被加入集合时,通过k个散列函数将这个元素映射成一个位数组中的k个点,把它们置为1。检索时如果这些点有任何一个为0,则被检元素一定不在;如果都是1,则

title: MySQL · mysql · myrocks之Bloom filter

author: 张远

Bloom filter 简介

Bloom filter用于判断一个元素是不是在一个集合里,当一个元素被加入集合时,通过k个散列函数将这个元素映射成一个位数组中的k个点,把它们置为1。检索时如果这些点有任何一个为0,则被检元素一定不在;如果都是1,则被检元素很可能在。这就是布隆过滤器的基本思想。
优点:布隆过滤器存储空间和插入/查询时间都是常数O(k)。
缺点:有一定的误算率,同时标准的Bloom Filter不支持删除操作。
Bloom Filter通过极少的错误换取了存储空间的极大节省。

bloom filter

设集合元素个数为n,数组大小为m, 散列函数个数为k

有一个规律是当 k=m/n*ln2 时,误算率最低。参考Bloom_filter wiki

rocksdb与bloom filter

rocksdb中memtable和SST file都属于集合类数据且不需要删除数据,比较适合于Bloom filter.

rocksdb memtable和SST file都支持bloom filter, memtable 的bloom filter数组就存储在内存中,而SST file的bloom filter持久化在bloom filter中.

  • SST Bloom filter
    SST Boomfilter 在Flush生成SST files时通过计算产生,分为两个阶段

    1. 将prefix_extrator指定的key前缀加入到HASH表hash_entries_中
    2. 将hash_entries_所有映射到Bloom filter的数组中

SST Bloom filter相关参数有

filter_policy=bloomfilter:10:false;
whole_key_filtering=0
prefix_extractor=capped:24
partition_filters=false

其中prefix_extractor=capped:24, 表示最多取前缀24个字节,另外还有fixed:n方式表示只取前缀n个字节,忽略小于n个字节的key. 具体可参考CappedPrefixTransform,FixedPrefixTransform

filter_policy=bloomfilter:10:false;其中bits_per_key_=10, bits_per_key_实际就是前面公式k=m/n*ln2 中的m/n. 从而如下计算k即num_probes_的方式

 void initialize() {
    // We intentionally round down to reduce probing cost a little bit
    num_probes_ = static_cast<size_t>(bits_per_key_ * 0.69);  // 0.69 =~ ln(2)
    if (num_probes_ < 1) num_probes_ = 1;
    if (num_probes_ > 30) num_probes_ = 30;
  }

use_block_based_builder_表示是使用block base filter还是full filter
partition_filters 表示时否使用partitioned filter,SST数据有序排列,按block_size进行分区后在生产filter,index_on_filter block存储分区范围. 开启partition_filters 需配置index_type =kTwoLevelIndexSearch

filter 参数优先级如下 block base > partitioned > full. 比如说同时指定use_block_based_builder_=true和partition_filters=true实际使用的block based filter

whole_key_filtering,取值true, 表示增加全key的filter. 它和前缀filter并不冲突可以共存。

屏幕快照 2017-08-30 下午5.14.07.png

  • memtable Bloom filter
    memtable 在每次Add数据时都会更新Bloom filter.

Bloom filter提供参数memtable_prefix_bloom_size_ratio,其值不超过0.25, Bloom filter数组大小为write_buffer_size* memtable_prefix_bloom_size_ratio.
memtable Bloom filter 中的num_probes_取值硬编码为6

另外参数cache_index_and_filter_blocks可以让filter信息缓存在block cache中。

MyRocks和bloom filter

在myrocks中,Bloom filter是全局的,设置了Bloom filter后,所有表都有Bloom filter。Bloom filter和索引是绑定在一起的。也就是说,表在查询过程中,如果可以用到某个索引,且设置了Bloom filter,那么就有可能会用到索引的Bloom filter.

MyRocks可以使用Bloom filter的条件如下,详见函数can_use_bloom_filter

  • 必须是索引前缀或索引全列的等值查询
  • 等值前缀的长度应该符合prefix_extrator的约定

我们可以通过以下两个status变量来观察Bloom filter使用情况
rocksdb_bloom_filter_prefix_checked:是否使用了Bloom filter
rocksdb_bloom_filter_prefix_useful:使用Bloom filter判断出不存在
rocksdb_bloom_filter_useful:BlockBasedTable::Get接口使用Bloom filter判断出不存在

设置参数rocksdb_skip_bloom_filter_on_read可以让查询不使用Bloom filter。

示例

最后给个示例
参数设置如下,使用partitioned filter

rocksdb_default_cf_options=write_buffer_size=64k;block_based_table_factory={filter_policy=bloomfilter:10:false;whole_key_filtering=0;partition_filters=true;index_type=kTwoLevelIndexSearch};prefix_extractor=capped:24

SQL

CREATE TABLE t1 (id1 INT, id2 VARCHAR(100), id3 BIGINT, value INT, PRIMARY KEY (id1, id2, id3)) ENGINE=rocksdb collate latin1_bin;
let $i = 1;
while ($i <= 10000) {
  let $insert = INSERT INTO t1 VALUES($i, $i, $i, $i);
  inc $i;
  eval $insert;
}

# case 1: 等值条件prefix长度 < 24, 用不Bbloom filter
select variable_value into @c from information_schema.global_status where variable_name='rocksdb_bloom_filter_prefix_checked';
select variable_value into @u from information_schema.global_status where variable_name='rocksdb_bloom_filter_prefix_useful';
select count(*) from t1 WHERE id1=100 and id2 ='10';
count(*)
0
select (variable_value-@c) > 0 from information_schema.global_status where variable_name='rocksdb_bloom_filter_prefix_checked';
(variable_value-@c) > 0
0
select (variable_value-@u) > 0 from information_schema.global_status where variable_name='rocksdb_bloom_filter_prefix_useful';
(variable_value-@u) > 0
0

# case 2: 符合使用Bbloom filter的条件,且成功判断出不存在
select variable_value into @c from information_schema.global_status where variable_name='rocksdb_bloom_filter_prefix_checked';
select variable_value into @u from information_schema.global_status where variable_name='rocksdb_bloom_filter_prefix_useful';
select count(*) from t1 WHERE id1=100 and id2 ='00000000000000000000';
count(*)
0
select (variable_value-@c) > 0 from information_schema.global_status where variable_name='rocksdb_bloom_filter_prefix_checked';
(variable_value-@c) > 0
1
select (variable_value-@u) > 0 from information_schema.global_status where variable_name='rocksdb_bloom_filter_prefix_useful';
(variable_value-@u) > 0
1
目录
相关文章
|
6月前
|
存储 缓存 关系型数据库
海量数据去重的hash,bitmap与布隆过滤器Bloom Filter
海量数据去重的hash,bitmap与布隆过滤器Bloom Filter
172 1
|
存储 Web App开发 缓存
数据库必知词汇:布隆过滤器(Bloom Filter)
布隆过滤器(Bloom Filter)是由Burton Bloom 在1970年提出的,其后在P2P上得到了广泛的应用。一个空的布隆过滤器是一个m位的位数组,所有位的值都为0。定义了k个不同的符合均匀随机分布的哈希函数,每个函数把集合元素映射到位数组的m位中的某一位。Bloom filter算法可用来查询某一数据是否在某一数据集合中。其优点是查询效率高、可节省空间。但其缺点是会存在一定的错误。因此Bloom filter 算法仅仅能应用于那些同意有一定错误的场合。可使用Bloom filter 算法的场合包含字典软件、分布式缓存、P2P网络和资源路由等等。
1374 0
|
2天前
|
存储 缓存 算法
【C++】BitSet和Bloom_Filter
位图(Bitmap)和布隆过滤器(Bloom Filter)是两种高效的数据结构。位图使用每一位二进制数表示数据项的存在状态,适用于精确判断元素存在性,广泛应用于图形图像处理、数据压缩、数据库索引等领域。布隆过滤器通过多个哈希函数将元素映射到位数组,用于快速判断元素是否可能属于集合,特别适合处理大规模数据,尽管存在误判率,但在网页缓存、网络数据包过滤等场景中表现出色。两者在空间效率、查询速度及误判率方面各有优势,适用于不同的应用场景。
11 4
|
4月前
布隆过滤器(Bloom Filter)的原理和实现
布隆过滤器(Bloom Filter)的原理和实现
|
6月前
|
消息中间件 缓存 算法
Bloom Filter在Hudi中的应用
Bloom Filter在Hudi中的应用
99 0
|
存储 关系型数据库 分布式数据库
"filter"的下推
"filter"的下推
45 1
|
缓存 算法 NoSQL
布隆过滤器(Bloom Filter)从入门到出土
布隆过滤器(Bloom Filter)从入门到出土
|
存储 缓存 NoSQL
Redis之布隆过滤器(Bloom Filter)解读
Redis之布隆过滤器(Bloom Filter)解读
|
数据采集 缓存 Serverless
布隆过滤器(Bloom Filter)
布隆过滤器(Bloom Filter)
114 0
|
存储 数据采集 缓存
布隆过滤器 Bloom Filter
布隆过滤器 Bloom Filter
布隆过滤器 Bloom Filter