阿里云E-MapReduce Spark 作业配置

本文涉及的产品
对象存储 OSS,20GB 3个月
EMR Serverless StarRocks,5000CU*H 48000GB*H
对象存储 OSS,内容安全 1000次 1年
简介: 1.进入阿里云 E-MapReduce 控制台作业列表。 2.单击该页右上角的创建作业,进入创建作业页面。 3.填写作业名称。 4.选择 Spark 作业类型,表示创建的作业是一个 Spark 作业。

1.进入阿里云 E-MapReduce 控制台作业列表

2.单击该页右上角的创建作业,进入创建作业页面。

3.填写作业名称。

4.选择 Spark 作业类型,表示创建的作业是一个 Spark 作业。Spark 作业在 E-MapReduce 后台使用以下的方式提交:

spark-submit [options] --class [MainClass] xxx.jar args
5.在应用参数选项框中填写提交该 Spark 作业需要的命令行参数。请注意,应用参数框中只需要填写“spark-submit”之后的参数即可。以下分别示例如何填写创建 Spark 作业和 pyspark 作业的参数。

创建 Spark 作业

新建一个 Spark WordCount 作业。

作业名称: Wordcount

类型:选择 Spark

应用参数:

在命令行下完整的提交命令是:

spark-submit --master yarn-client --driver-memory 7G --executor-memory 5G --executor-cores 1 --num-executors 32 --class com.aliyun.emr.checklist.benchmark.SparkWordCount emr-checklist_2.10-0.1.0.jar oss://emr/checklist/data/wc oss://emr/checklist/data/wc-counts 32

在 E-MapReduce 作业的应用参数框中只需要填写:

--master yarn-client --driver-memory 7G --executor-memory 5G --executor-cores 1 --num-executors 32 --class com.aliyun.emr.checklist.benchmark.SparkWordCount ossref://emr/checklist/jars/emr-checklist_2.10-0.1.0.jar oss://emr/checklist/data/wc oss://emr/checklist/data/wc-counts 32

需要注意的是:作业 Jar 包保存在 OSS 中,引用这个 Jar 包的方式是 ossref://emr/checklist/jars/emr-checklist_2.10-0.1.0.jar。您可以单击选择 OSS 路径,从 OSS 中进行浏览和选择,系统会自动补齐 OSS 上 Spark 脚本的绝对路径。请务必将默认的“oss”协议切换成“ossref”协议。

创建 pyspark 作业

E-MapReduce 除了支持 Scala 或者 Java 类型作业外,还支持 python 类型 Spark 作业。以下新建一个 python 脚本的 Spark Kmeans 作业。

作业名称:Python-Kmeans

类型:Spark

应用参数:

--master yarn-client --driver-memory 7g --num-executors 10 --executor-memory 5g --executor-cores 1  ossref://emr/checklist/python/kmeans.py oss://emr/checklist/data/kddb 5 32

支持 Python 脚本资源的引用,同样使用“ossref”协议。

pyspark 目前不支持在线安装 Python 工具包。

6选择执行失败后策略。

7.单击确定,Spark 作业即定义完成。

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
1月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
65 2
|
3月前
|
SQL 分布式计算 监控
|
3月前
|
分布式计算 并行计算 数据处理
|
4月前
|
SQL 分布式计算 Java
E-MapReduce Serverless Spark体验评测
从了解到部署实践,全方位带你体验大数据平台EMR Serverless Spark的魅力。
305 7
E-MapReduce Serverless Spark体验评测
|
3月前
|
分布式计算 资源调度 监控
MapReduce程序中的主要配置参数详解
【8月更文挑战第31天】
84 0
|
4月前
|
分布式计算 监控 Serverless
E-MapReduce Serverless Spark 版测评
E-MapReduce Serverless Spark 版测评
11603 10
|
4月前
|
分布式计算 Serverless Spark
【开发者评测】E-MapReduce Serverless Spark获奖名单
E-MapReduce Serverless Spark获奖名单正式公布!
180 1
|
4月前
|
SQL 分布式计算 监控
在hue上部署spark作业
7月更文挑战第11天
130 3
|
4月前
|
分布式计算 运维 Serverless
E-MapReduce Serverless Spark开发者评测
**EMR Serverless Spark测评概要** - 弹性处理大规模用户行为分析,提升产品优化与推荐精度。 - 相比自建Spark集群,EMR Serverless Spark展现更高稳定性、性能,降低成本,简化运维。 - 支持多种数据源,提供Spark SQL与DataFrame API,自动资源调度,适用于波动需求。 - 文档清晰,但可增强特定场景指导与故障排查。 - 建议优化监控、调度算法,增加内置分析工具,并强化与其他阿里云产品(如MaxCompute, DataWorks, QuickBI)的联动。 - 全托管服务减轻运维负担,但资源管理、查询效率与兼容性仍有提升空间。
78 1
|
4月前
|
分布式计算 运维 Serverless
E-MapReduce Serverless Spark 评测
EMR Serverless Spark服务对比传统引擎和自建集群展现高稳定性和性能,自动化运维降低成本。其敏捷性、自动扩缩容和阿里云生态集成提升了开发效率。不过,监控预警、资源调度和工具集扩展是潜在改进点。该服务可与MaxCompute、DataWorks、Quick BI联动,实现数据处理、管理、可视化一站式解决方案。
75 0
下一篇
无影云桌面