如何利用图像识别、语音识别、文本挖掘做好鉴黄?

本文涉及的产品
图像搜索,7款服务类型 1个月
简介:

如何利用图像识别、语音识别、文本挖掘做好鉴黄?

雷锋网按:人工智能鉴黄市场竞争愈发激烈,目前图普科技、阿里绿网、腾讯万象优图等团队已占据大量市场份额,在此环境下,不少公司试图通过提供更全面的服务从这片红海中分一杯羹。

那么更全面的定制服务体现在哪些地方?雷锋网(公众号:雷锋网)特地采访了极限元 CEO 雷臻,雷臻从图像识别、语音识别、文本挖掘三个维度向雷锋网讲解 AI 鉴黄,同时对一些工程细节进行阐述。

直播鉴黄一般从哪些方面进行鉴定?

通常情况下,直播鉴黄通过视频截图、图像识别、语音技审、弹幕监控、关键字抽取等能力智能识别色情内容。在向客户正式提供图像识别服务前,会先邀请直播平台用户进行体验测试,收集一些直播平台专属特征数据,比如不同的直播背景、环境光线强度、话题内容等,进行定制化的训练模型,不同的直播平台将获得定制化的专属图像识别服务。

其中视频直播内容的审查鉴定可以从以下几个步骤:识别图像中是否存在人物体征,统计人数;识别图像中人物的性别、年龄区间;识别人物的肤色、肢体器官暴露程度;识别人物的肢体轮廓,分析动作行为;除了图像识别之外,还可以从音频信息中提取关键特征,判断是否存在敏感信息;实时分析弹幕文本内容,判断当前视频是否存在违规行为,动态调节图像采集频率。

在图像识别方面,其中每分钟视频采集关键帧的频率可以由客户设定,从1秒到几十秒均可。例如可以默认5秒采集一次关键帧用于识别,也可以在出现疑似告警时动态调节采集频率,加快至每秒一张。

您刚提到音频关键特征提取,这个可以深入讲讲吗?

音频分析主要有以下几个方面:

  • 通过声纹识别技术,判断当前直播间的主播是否为注册主播本人,对主播身份进行识别。

  • 对主播的语音内容进行关键词检索,是否存在禁语、敏感词。

  • 对特定的连续语音数据段进行识别,是否存在不良信息。

  • 对口播广告的播出频次进行统计,分析广告投放效果。

不过视频、音频双通道检测的方案由用户来决策,秀场直播通常用图像检测就可以满足绝大部分需求,音频检测可能更适用于语音内容为主的直播平台。两者结合起来会大大提高识别准确率、降低误报率,但成本也会相应提高,所以用户可以根据业务需求进行选择。

目前的准确率、误报率、召回率大概是多少?是否会进行人工复审?

目前直播平台涉黄图像检测的准确率高达99%以上,误报率低于1%,需要客户进行人工复核的比例不超过3%。通常情况下不提供人工复审的服务,但是会对疑似的图像进行标注并提醒用户进行人工复核。人工复核后的数据会被收集起来进行迭代训练,这样可以不断提升识别的准确率。

直播的实时性、对于机器的图片识别处理速度要求特别高,对于机器的计算能力会不会特别高?采用什么样的方式进行处理?

网络视频直播实时性强,对服务端图像识别处理的速度要求特别高,除了对带宽有较高的要求外,还需要识别服务器拥有强大的GPU运算能力,尤其是应用深度机器学习算法进行模型训练阶段,强大的GPU集群服务器是不可或缺的,并基于全链接层的特性去除了对训练图像大小的限制,快速提升算法处理速度。此外在采集视频图片时也可以采用动态调节采集频率的办法,通常情况下几秒一帧,出现敏感信息后加快采集频率,可以更及时的识别涉黄信息并提出告警。

模型训练所需的数据的量有多大?一般什么原因会影晌鉴定准确率?

以极限元为例,基础数据集有几千万张图片,此外每天还会追加两万张各类正、负样本图片,用于迭代训练,不断微调优化识别准确率。每周会进行一次基础模型训练,每1-2天会进行一次增量模型迭代训练。

至于鉴定准确率影响层面,主要还是数据量的匮乏,样本对应用场景的覆盖不全面导致训练出的模型存在误报、漏报或者识别错误,随着深度机器学习算法的日趋成熟,数据来源的多样性、专业性反而成为模型构造的重中之重。

此外,主播刻意进行一些干扰检测的手段,比如遮挡敏感部位、画中画等等,也会一定程度上影响到机器的识别判断。

机器能不能自动处理:屏蔽、删除、禁播等?

涉黄图片检测服务部署在云端,本身没有网络路径可以接触到用户的直播间管理系统,因此无法自动屏蔽、删除、暂停直播间的活动。但是如果用户选择私有云的部署方式,并授权识别服务器可以访问直播间管理系统,那么对涉黄直播间的删、停等操作是可以实现的。

智能鉴黄相对于人工鉴黄、成本下降多少?

以一家月直播10万小时的中小直播平台为例,如果采用传统的内容审核技术,100人的内容管理团队每月所花费的成本在80万上下。如果借助人工智能进行内容监控,人力投入可以削减到10人左右,综合投入不过10万到20万之间,将大大降低人力成本和管理费用。此外还有因此而节省的监视设备费、办公场地费等等。

色情和非色情的界限怎么把握、拿捏?

首先,在建立这样一个分类模型时,会有人工对图像大数据进行标注,存在一定主观判断误差,但也在大众理解的范围内。识别结果除了色情和正常外,还存在一个疑似或者称之为性感的类别,这些都是根据机器识别后的近似值进行匹配。

本文作者:亚峰

本文转自雷锋网禁止二次转载,原文链接

相关文章
|
8月前
|
机器学习/深度学习 固态存储 安全
表情识别-情感分析-人脸识别(代码+教程)
表情识别-情感分析-人脸识别(代码+教程)
|
23天前
|
机器学习/深度学习 算法 人机交互
智能语音识别技术的最新进展与未来趋势####
【10月更文挑战第21天】 在当今这个信息爆炸的时代,人机交互方式正经历着前所未有的变革。本文深入探讨了智能语音识别技术的前沿动态,从深度学习模型的创新应用到跨语言、跨领域的适应性增强,揭示了该领域如何不断突破技术壁垒,提升用户体验的真实案例与数据支撑。通过对比分析当前主流算法的性能差异,本文旨在为研究者和开发者提供一幅清晰的技术演进蓝图,同时展望了多模态融合、情感识别等新兴方向的广阔前景。 ####
156 7
|
4月前
|
机器学习/深度学习 数据采集 自然语言处理
使用Python实现深度学习模型:智能社交媒体内容分析
使用Python实现深度学习模型:智能社交媒体内容分析
596 69
|
3月前
|
机器学习/深度学习 数据采集 算法
图像识别中的局限性
【10月更文挑战第1天】
186 0
|
5月前
|
人工智能 数据挖掘 语音技术
通义语音AI技术问题之说话人识别的两种类型分类如何解决
通义语音AI技术问题之说话人识别的两种类型分类如何解决
89 5
|
7月前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在情感识别方面有哪些具体应用
AI在元宇宙学习中扮演关键角色,通过数据收集分析用户习惯、兴趣,提供个性化推荐。情感识别调整教学策略,智能评估反馈学习效果,实时互动解答问题,自适应学习系统匹配个体需求。同时,注重隐私安全保护,打造高效、精准、个性化的学习环境。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
利用深度学习提升语音识别准确率的技术探讨
传统的语音识别技术在面对复杂的语音场景时常常表现出准确率不高的问题。本文探讨了如何利用深度学习技术,特别是深度神经网络,来提升语音识别的精度。通过分析深度学习在语音处理中的应用以及优势,我们展示了如何结合最新的研究成果和算法来解决现有技术的局限性,进一步推动语音识别技术的发展。 【7月更文挑战第3天】
341 0
|
机器学习/深度学习 人工智能 监控
如何利用机器学习提高人脸识别准确率
如何利用机器学习提高人脸识别准确率
282 1
|
机器学习/深度学习 监控 算法
解密阿里云智能图像识别服务(AIGC)的关键技术与应用
解密阿里云智能图像识别服务(AIGC)的关键技术与应用
799 1
|
机器学习/深度学习 固态存储 TensorFlow
搭建深度学习模型实现“换脸检测” Deepfake Detection
搭建深度学习模型实现“换脸检测” Deepfake Detection
496 0
搭建深度学习模型实现“换脸检测” Deepfake Detection

热门文章

最新文章