Yann LeCun清华演讲:讲述深度学习与人工智能的未来

简介:

Yann LeCun清华演讲:讲述深度学习与人工智能的未来

半个月前,Yann LeCun要来清华演讲的消息在国内AI圈一经传开,各位AI界人士便坐不住了。作为Facebook人工智能研究院院长、纽约大学终身教授、卷积神经网络之父,LeCun已然成为了AI人心目中的男神。

演讲当天(3月22日),雷锋网(公众号:雷锋网)也来到了LeCun的演讲现场。演讲开始前,只见许多想要听演讲,却无奈没有得到票的同学,焦急地坚守在演讲大厅门前,希望能一睹男神风采,或运气爆棚能偶得一票。一个专业性质极强的学术演讲能吸引这么多人来参加,也再一次体现了Yann LeCun的个人魅力和在AI界的影响力。也许是被莘莘学子们热爱学习的精神所打动,最后,工作人员临时加开了演讲大厅的二楼,让许多没有票的同学也能进入大厅,最后现场可谓是座无虚席。

据雷锋网了解,Yann LeCun此次演讲由清华大学经济管理学院发起,清华 x-lab、Facebook 共同主办,作为《创新与创业:硅谷洞察》课程的第一节公开课的演讲者,昨日,LeCun为大家带来的演讲题目为《深度学习与人工智能的未来》。

这两年,提起AI一定绕不开的一个话题就是AlphaGo。演讲刚开始,LeCun也以这个大家熟知的事件说起,随即引出一个问题:

“当有大量可用样本(比如桌椅、猫狗、和人)时,训练机器没有问题;但如果机器从来没有见过这些实物,它还能识别出样本吗?”

带着这个问题,LeCun开始了当天的演讲。

演讲中,LeCun带大家回顾了神经网络的发展历程,并以身边的小故事为例,讲述了神经网络发展在早期被受质疑,遭遇重重瓶颈,而在当下则是备受好评、突破不断,他向大家展示了在这两个阶段,人们对神经网络截然不同的看法。

接着,LeCun讲到,如今,AI发展的一大难题就是怎么样才能让机器掌握人类常识。掌握人类常识是让机器和人类自然互动的关键。想要做到这一点,它需要拥有一个内在模型,以具备预测的能力。LeCun用一个公式简洁地概括了这种人工智能系统:预测+规划=推理。而研究人员现在要做的,就是不需依赖人类训练,让机器学会自己构建这个内在模型。

除了AI发展的困境,LeCun还和大家分享了神经网络当下的研究进展。

如今,深度卷积网络已可用于解决包括目标识别在内的各类计算机视觉问题。并且,随着网络深度不断增加,还出现了可用于图像识别、语义分割、ADAS 等众多场景的新型深度卷积神经网络结构,如VGG、GoogLeNet、ResNet 等。

LeCun在演讲中还特别提到Facebook人工智能研究院的最新研究成果——通用目标分割框架 Mask R-CNN,并展示了该框架在 COCO 数据集上的结果(详细内容请参见雷锋网报道Facebook 最新论文:Mask R-CNN实例分割通用框架,检测,分割和特征点定位一次搞定(多图))。

最后,LeCun还为大家带来了一系列技术干货:具体讲解了对抗训练中的深度卷积对抗生成网络 (DCGAN)和基于能量的对抗生成网络(EBGAN),还提到了语义分割的视频预测技术,并向大家展示了时间预测结果。

演讲一结束,同学们迫不及待地涌上前去,向LeCun提出自己的疑问。LeCun也对每个同学的问题做出了详细解答,令同学们收获良多。

而对近日腾讯围棋 AI 绝艺夺冠这一消息,LeCun也表示非常欣喜,并且看好AI在ADAS、医疗等领域的发展。

本文作者:夏睿

本文转自雷锋网禁止二次转载,原文链接

相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
130 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
350 55
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
5天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
42 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的深度学习与自然语言处理前沿
【10月更文挑战第10天】探索人工智能的深度学习与自然语言处理前沿
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的未来:机器学习与深度学习的融合之旅
【9月更文挑战第35天】在这篇文章中,我们将深入探讨人工智能的两大支柱——机器学习和深度学习。我们将通过代码示例和实际应用案例,揭示它们如何相互补充,共同推动AI技术的发展。无论你是初学者还是有经验的开发者,这篇文章都将为你提供宝贵的见解和启示。
100 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
402 33
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘人工智能:深度学习的奥秘与实践
在本文中,我们将深入浅出地探索深度学习的神秘面纱。从基础概念到实际应用,你将获得一份简明扼要的指南,助你理解并运用这一前沿技术。我们避开复杂的数学公式和冗长的论述,以直观的方式呈现深度学习的核心原理和应用实例。无论你是技术新手还是有经验的开发者,这篇文章都将为你打开一扇通往人工智能新世界的大门。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
149 14
|
3月前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能中的深度学习模型优化策略
探索人工智能中的深度学习模型优化策略
127 13

热门文章

最新文章