NVIDIA 深度学习部门总监 Jim McHugh :AI 驱动下的大数据之路已铺好

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

编者按:无论是打败世界冠军的 AlphaGo,还是百度无人驾驶、阿里和腾讯的人工智能都在使用 NVIDIA 的芯片组,它在人工智能领域扮演着大脑的角色。无论软件公司研究出多么先进的算法,最终都需要处理器来进行运算,没有它们的支持,人工智能的良性发展也就无从谈起。

最近,NVIDIA 深度学习部门总经理 Jim McHugh 接受了国外媒体 InsideBigdata 的访谈。从他在 2016 年纽约 Strata + Hadoop World 大会上的发言开始谈起,Jim 讲述了他对 AI 驱动下的大数据之路的总体理解以及 NVIDIA 公司的战略发展前景。文章原标题为 《 Interview: Jim McHugh, GM of the Deep Learning Group at NVIDIA 》,作者 Daniel D. Gutierrez 。由雷锋网(公众号:雷锋网)编译而成,未经许可,不能转载。

NVIDIA 深度学习部门总监 Jim McHugh :AI 驱动下的大数据之路已铺好

NVIDIA 深度学习部门总经理 Jim McHugh,图源:siliconangle

Jim McHugh 是 NVIDIA 深度学习部门的灵魂人物,在他的领导下,NVIDIA 推出了全球首款单机箱深度学习超级 AI 计算机 DGX-1。他的职责包括产品管理、产品营销以及提供合作伙伴解决方案。Jim 专注于为数据中心提供一些基于 GPU 的计算战略。作为市场商业执行、技术领导者,他已经有 25 年的实战经验,包括在苹果、思科等大公司担任重要职位的经历。Jim 对商业驱动因素、AI 驱动下的技术和产品,以及市场/客户动态有着深刻的见解。以下为本次访谈具体内容:

记者:

请简要介绍一下 NVIDIA 在本次会议上做的事情,并且就此次大会中所探讨的问题发表下见解。

Jim McHugh:

这对我们来说是件有趣的事情。昨天我在 O'Reilly 国际联盟举办的人工智能研讨会上发表了一个主题演讲。来自世界各地的 AI、大数据领域的学者和专家都参与了这次会议的探讨。谷歌在这方面很有代表性,我们已经有人正在关注人工智能的道德伦理问题。在这里,我们都在探讨一种 “加速数据分析”的概念以及它能够如何改变我们现在的人工智能格局。

说到这个,我不得不提到 Kinetica、MapD、SQream 和 BlazingDB 数据库以及一些分析组件。它们能够让你在几毫秒中完成运算。通常情况下,人们进行每次搜索时大概需要花费十几秒的时间才能得到答案,而现在,我们探讨的是能让你在几毫秒中完成对一个界面的数十次的搜索查询。以前,你花费 10 几秒的时间搜索查询所使用的很可能是 x86 处理器。而现在,人们无法想象我们的数据分析能力有多快。它真正地改变了一些东西,并且确实克服了人们在很长一段时间内在大数据领域遇到的瓶颈问题。

记者:

除了本次大会。你还参加过其他什么会谈吗?

Jim McHugh:

现在的格局是在不断变化的,我觉得这让人兴奋。在过去两年,分布式平台 Hadoop 的出现,还有 Spark 的诞生都是这个领域的大事。人们试图使数据分析变得更快,但我认为他们仍然受到一些阻碍——如果你只是干坐着等一分钟,然后再继续下一个搜索,人们就会感到厌烦。所以,我只是觉得这个领域(加速数据分析)很容易吸引众人的眼球。他们会说,“哇,你真能让我搜索得更快吗?”这意味着,搜素的速度就和你在开始时的思考速度几乎一样。更重要的是,这种搜索能够带给你更多可以去尝试的东西,而不只是试图回答你的问题。事实上,你正在进行一种探索,这使得搜索功能变得很酷。

另一个方面是,我不知道你是否听说过一个叫 Graphistry 的公司。他们是一个可视化的图形公司,在这里,我们正在与他们合作进行一些安全演示。该公司能够查看到你的安全日志。比方说,当你在使用安全日志分析时,你可以点击 Graphistry,在几行数字化代码的帮助下,它立即可以让你快速通过安全警报,然后你可以直观地将这些成百上千的安全警报进行自然的关联,最终你就可以弄清楚这是否只是从防火墙或内部排序扫描而形成的一些噪音。同样,这也是非常有趣的,并且得到了很多人的关注。因为人们有了这些所有的警报日志之后就能够做出一个安全报告。它实际上从可视化的角度更深层次地克服了盲点问题,并进行了有效的分析处理。在 Graphistry 和我们的共同展示下,查看安全日志的方式已经发生了改变。

记者:

在这个“AI 驱动下的数据分析”(AI driven analytics)领域,你如何看待 NVIDIA 合作伙伴的地位?

Jim McHugh:

我觉得在形容“ AI 驱动下的数据分析”领域时,用“前程似锦”这个时髦的词再好不过了。人们正在使用大数据来获取信息和进行商业活动。同时,我也看到这些合作伙伴做的第一件事就是要将数据分析工具的速度提高。方程式的另一边是成本问题,我们需要用最少的成本来完成加速计算的工作。当我们在扩展工具的时候会产生一部分的隐性成本,但我们不能只是使用更多的计算机设备来完成它,我需要大量的排气扇、互连线,机箱,这些所有的硬件或者技术。这就是为什么我们要寻求合作伙伴的原因。

第二步,我们要更加关注深度学习。深度学习的时代已经汹涌而至,它正在改变一切。人们想在进入某个特定的行业之前,就想知道深度学习是如何使得这个领域走在前列的。他们用图表分析的方法来理解数据。所以,你要想弄明白这两者的相关性,就必须获取 100 倍以上的数据。数据会告诉你它是如何理解这个领域的。因此,我们让一些应用程序允许你对数据进行追踪,成为你每天的商务分析师。如果你想了解更多,我觉得 Graphistry 提供了一个很好的方式。

因此,我所说的是两个不同的方面。首先,他们先对数据获取的方式加速,第二步,给到你一个可视化组件。最后一步就要考虑这些如何与人工智能进行融合。我已经沿着这些步骤与 MAPD 和 Kinetica 进行了一些对话。目前,我们的合作伙伴正在探索人们到底能够多大程度地对数据进行加速,以及如今将其运用到一些框架当中。

记者:

你认为现在走这条 AI 驱动下的数据分析之路还太早了吗?可以举一些例子来说明。

Jim McHugh:

我知道本公司的许多客户已经在使用这种模型,比如美国邮政,PGE,Verizon 公司,EMC 等。他们热爱这种方式带来的“加速度”。他们也说得很清楚——这种方法能节约成本。公司可以用节省下来的资金用于支付基础设施和一些技术开发。让我们停下来想一想,他们这样做的原因是什么。如果你是零售商的一员,你会希望追踪到库存的所有状况,从而快速地做出报告。而如果你在使用先前记忆的内存数据库,你就需要支付一笔昂贵的费用对它进行扩展,否则查询的速度会很慢。

现在我们已经有许多案例来证明这一点。在这里,我们的展位已经相当拥挤,很多人愿意停下脚步来关注我们正在做的事情。说实话,我很喜欢 Strata + Hadoop World 大会,这是一个真正以客户为中心来显示的活动。它让供应商们面对面的交流,也让观众能够驻足观看演示,询问我们更多的信息。有意思的是,当我们正在进行深度学习相关的演示时,观众开始聚集了起来。这说明,人们对于大数据领域的 AI 和深度学习是有着浓厚的兴趣的。

记者:

你能从现在看出一年后 NVIDIA 将如何走 AI 驱动下的数据分析之路吗?

Jim McHugh:

哈哈,我知道,你希望从我口中听到人们都在谈论的这个口头禅—— “AI 企业”。的确,这是一个非常合适的词来形容我们现在的业务布局——利用人工智能和机器学习来处理数据、获得信息。属于 AI 的时代已经到来。我相信,这也是我们进入 zettabytes (泽字节,大容量的储存容量单位)的一年。因此,我们的速度会更快。在大数据的洪流之中,人们在寻找新的方法来掌控自己的工作和生活。这也就是说,如果人们在看到数据类公司的展示时,他们更愿意停下脚步,然后会说,“ 嘿,我们可以用这个数据抓住更多的机会。”事实上,我们可以使访问数据、获取信息的速度更快,但我们要使用人工智能技术。NVIDIA 将开始使用机器学习和深度学习,真正把数据的优势利用起来。这就是我们的心态。用户不再觉得现在是处在一个“海量数据”的洪流当中,而是对数据的需求如饥似渴——你对数据开始有着永不满足的欲望,我认为这就是我们要去的地方。

而大家对这件事的反应也让我们挺吃惊的。在我们这个行业里,不断有人来对 NVIDIA 说,“我们需要加速!我们需要让我们的应用在 NVIDIA 帮助下加速!我们需要 GPU 加速!”因为传统的处理器速度更新频率并不高。事实上,我们全新的架构已经在给 GPU 进行加速,但是你要知道这个生态系统并不能使这样的更新经常发生。而问题的关键在于“ 我们如何加速?我们如何利用 GPU 的优势?它怎么才能完成目标?“ 只有这些问题解决了,才会真正到达“加速”的转折点。上个月,NVIDIA 总裁黄仁勋在 GTC 大会上说过,深度学习作为全新的计算模型正在改变计算的方方面面,它不仅改变了软件开发的方式、开发地点和运行方法,还在改变着服务器架构、数据中心和智能设备。而这一切都在 GPU 的帮助下,才能实现数据中心吞吐量最大化。我觉得这个理论很有趣。近两年,深度学习的发展迅速,而现在,是时候让人们意识到人工智能驱动下的大数据分析时代已经到来了。

 Via insidebigdata

推荐阅读:

为何大数据公司很多,AI公司却很少?

五分钟读完美国白皮书:为了人工智能的未来,政府都做了哪些准备?


本文作者:刘子榆


本文转自雷锋网禁止二次转载,原文链接

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4天前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
17 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
11天前
|
存储 人工智能 数据管理
|
7天前
|
人工智能 分布式计算 数据处理
MaxCompute Data + AI:构建 Data + AI 的一体化数智融合
本次分享将分为四个部分讲解:第一部分探讨AI时代数据开发范式的演变,特别是MaxCompute自研大数据平台在客户工作负载和任务类型变化下的影响。第二部分介绍MaxCompute在资源大数据平台上构建的Data + AI核心能力,提供一站式开发体验和流程。第三部分展示MaxCompute Data + AI的一站式开发体验,涵盖多模态数据管理、交互式开发环境及模型训练与部署。第四部分分享成功落地的客户案例及其收益,包括互联网公司和大模型训练客户的实践,展示了MaxFrame带来的显著性能提升和开发效率改进。
|
5天前
|
存储 人工智能 数据管理
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。
|
16天前
|
数据采集 人工智能 分布式计算
探索 MaxCompute MaxFrame:AI 数据预处理的高效之选
探索 MaxCompute MaxFrame:AI 数据预处理的高效之选
|
1月前
|
人工智能 分布式计算 DataWorks
大数据& AI 产品月刊【2024年11月】
大数据& AI 产品技术月刊【2024年11月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
1月前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
机器学习/深度学习 人工智能 自动驾驶
NVIDIA能在竞争激烈的AI芯片市场保持优势吗?
供职于Moor Insights & Strategy的高级分析师Karl Freund以《深度学习的寒武纪爆发》为题分三部分阐述了自己对深度学习芯片的观察
527 0
|
10天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
144 97
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
46 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务