2016 机器学习之路:一年从无到有掌握机器学习

简介:
第一步:Hacker News 和 Udactiy


Borgen 对机器学习的兴趣始于 2014 年。跟很多人一样,他最初是看到 Hacker News 的帖子,单纯觉得教计算机学东西很酷。那时候他还只是个业余的编码爱好者,连程序员都谈不上。


于是,Borgen 开始了他的机器学习之路。首先,到 Uadcity 看监督学习的视频,然后阅读所有能找到的、跟机器学习有关的读物。




Borgen 总结说,“这给了我一点概念上的理解,不过没有实践技巧。”


同时,他也十分坦承,Udacity 的 MOOC 他并没有上完——只要是 MOOC,他几乎都没有坚持上完过。这一点,无论怎么说,至少让篇文章的置信度倍增。


第二步:挂掉 Coursera 机器学习课


2015 年初,Borgen 为了成为正式的开发人员,参加了 Founders and Coders(FAC)在伦敦的训练营。在 FAC,他和同学一起,每周二晚上会看 Coursera 上机器学习课程的视频。



不用说,大名鼎鼎的吴恩达的机器学习课。Borgen 表示课很赞,学了很多,然而他个人觉得这门课不适合新手。至少他自己,就需要反复看视频才能掌握里面讲的概念——当然,这是 Borgen 的个人感受。不过,Borgen 在 FAC 学的同学也一个个掉队,最终他自己也挂掉了。


Borgen 总结说,他当时应该学一门用机器学习库编代码的课,而不是从零开始建算法,至少应该用他已经知道的编程语言写算法。


一句话,“对新手来说,一边学语言一遍写机器学习算法代码难度是很高的”。这句话有一定的参考价值。


Borgen 的建议是,可以选择 Udacity 的《机器学习入门》(Intro to Machine Learning),更容易入门,上来就能实践,在提升经验值的过程中,学习的趣味性也会增多。


【经验】从简单的实践学起,之后再学困难的、偏理论的东西


第三步:一周学会机器学习


Borgen 在 FAC 做的最后一件事情,就是“一周学会机器学习”。他的目标是,一周以后能够实用机器学习解决实际问题,而他也成功做到了这一点。


具体的经验 Borgen 写在了另一篇文章里。有兴趣进一步了解,可以访问:https://medium.com/learning-new-stuff/machine-learning-in-a-week-a0da25d59850#.elu1hfaak


简单说,在一周的时间里,Borgen 做了以下几件事情:


  • 学会了 Scikit Learn

  • 在真实世界数据库跑了一次机器学习

  • 从零(用 Python )写了一个线性回归算法

  • 做了一点儿 NLP


【经验】腾出一周时间来全身心地沉浸到机器学习里面去,效果惊人。


第四步:挂掉神经网络


成功在一周的时间里拿下机器学习给了 Borgen 自信。因此,在他结束 FAC 回到挪威时,他计划进行第二次挑战——一周内学会神经网络。


然而,事实是残酷的。离开 FAC 那种 沉浸式学习环境后,要一天写 10 小时的代码可不容易。


【教训】找一个合适的环境做这种事情。


不过,Borgen 到底还是学上了神经网络。去年 7 月份的时候,他写完了一个网络的代码。虽然很粗糙,但完成比完美重要,对吧?




下半年,Borgen 换了一份新工作,这在某种程度上影响了他的机器学习学习进展。这一阶段他主要做的是实现神经网络,他把大学时学的线性代数重新看了一遍。年底时,Borgen 写了篇总结:


《学习如何编写神经网络代码》


也是在这篇文章里,Borgen 记录了他从零开始写代码的过程。这篇文章在 Medium 上点赞的数量接近 600。


第四步:在 Kaggle 竞赛中实践


2015 年圣诞节,Borgen 参加了 Kaggle 竞赛。当然,实践的效果是显著的,他得到了通过算法和数据实际迭代实验的经验,也学会了在做机器学习项目时要相信自己的逻辑,“如果调参或特征工程从逻辑上看有用,那么一般都会有用”。




第五步:在工作中建立学习的习惯


2016 年初,Borgen 想将他在去年年底获得的动力持续到工作中,便询问经理是否能在上班时学新的东西——经理答应了。虽然 Borgen 在文中没有多写,实际上,从这个经历中也能学到东西:


勇于提出需求,它们才有机会得到满足——当然,你的需求需要合理。


于是,Borgen 就在上班时也能学机器学习啦(拿钱做想做的事情!)。在 2016 年积累了相关经验以后,Borgen 的第一站是 Uadcity 的深度学习课程。然而,事实证明,对于现在的他来说,Udacity 的这门课已经太浅。不过,课后的 Ipython Notebook 作业却太难。Debug 浇灭了他的大部分兴趣。又一次地,一门 MOOC 被他放弃。



但随后,Borgen 发现了斯坦福的 CS224D,这门课让他获益匪浅。Borgen 总结斯坦福 CS224D 的好处是:


  • 尽管难,但做题从来没有 debug;

  • 课程提供答案,便于加深理解。


尽管 Borgen 仍然没有把这门课上完,但他推荐有兴趣的人去学。




另外,Borgen 在学这门课的过程中,为了完成题目,请了一位家教,时薪 40 美元,这位家教帮他发现了很多问题。因此,他得到了这么一条经验。


【经验】花 50 美元/时的金额聘请机器学习家教,绝对值得。(如果你有机器学习经验,你可以获得时薪 50 美元的打工机会。)


学以致用,提高销售额


Borgen 在工作中实践机器学习,他搭建了一个系统,节省了公司销售部门同事的很多时间。相关代码:https://github.com/xeneta/LeadQualifier


以上就是 Borgen 在实际工作中一年掌握机器学习的历程。不管带不带感,至少十分真实。Borgen 在文章末尾写道:“如果我做得到,你也做得到。”


尤其是工作中的程序员,你不想试试吗?


文章转自新智元公众号,原文链接

相关文章
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】机器学习的详细阐述
机器学习(Machine Learning, ML)是一种通过从数据中学习来自适应改进预测和决策的人工智能技术。以下是对机器学习的详细阐述
31 2
|
5月前
|
机器学习/深度学习 数据采集 搜索推荐
机器学习多场景实战(一)
机器学习已广泛应用,从个性化推荐到金融风控,数据指标是评估其效果的关键。数据指标包括活跃用户(DAU, MAU, WAU)衡量用户粘性,新增用户量和注册转化率评估营销效果,留存率(次日、7日、30日)反映用户吸引力,行为指标如PV(页面浏览量)、UV(独立访客)和转化率分析用户行为。产品数据指标如GMV、ARPU、ARPPU和付费率关注业务变现,推广付费指标(CPM, CPC, CPA等)则关乎广告效率。找到北极星指标,如月销售额或用户留存,可指导业务发展。案例中涉及电商销售数据,计算月销售金额、环比、销量、新用户占比、激活率和留存率以评估业务表现。
|
5月前
|
机器学习/深度学习 搜索推荐 数据挖掘
机器学习多场景实战(二 )
这是一个关于机器学习应用于电商平台用户行为分析的概要,包括以下几个关键点: 1. **月活跃用户分析**:通过购买记录确定活跃用户,计算每月活跃用户数。 2. **月客单价**:定义为月度总销售额除以月活跃用户数,衡量平均每位活跃用户的消费金额。 3. **新用户占比**:基于用户首次购买和最近购买时间判断新老用户,计算每月新用户的购买比例。 4. **激活率计算**:定义为当月与上月都有购买行为的用户数占上月购买用户数的比例,反映用户留存情况。 5. **Pandas数据操作**:使用Pandas库进行数据集合并(concat和merge),以及计算不同维度的组合。
|
6月前
|
机器学习/深度学习 存储 人工智能
机器学习(二)什么是机器学习
机器学习(二)什么是机器学习
95 0
|
11月前
|
机器学习/深度学习 算法 安全
机器学习——实践
机器学习——实践
121 0
|
机器学习/深度学习 人工智能 搜索推荐
【机器学习基础】机器学习入门(1)
【机器学习基础】机器学习入门(1)
91 0
|
机器学习/深度学习 人工智能 算法
【机器学习基础】机器学习入门(2)
【机器学习基础】机器学习入门(2)
66 0
|
机器学习/深度学习 人工智能 自然语言处理
机器学习技术
机器学习技术
169 0
|
机器学习/深度学习 人工智能 算法
机器学习连载(27)
机器学习连载(27)
52 0
机器学习连载(27)
|
机器学习/深度学习
机器学习连载(7)
机器学习连载(7)
55 0
机器学习连载(7)