专访田渊栋 | Torch升级版PyTorch开源,Python为先,强GPU加速

简介:

专访Facebook研究员田渊栋和PyTorch作者Soumith


新智元 :田博士,关于PyTorch的发布,请问可以采访您几个问题嘛?

田渊栋 :哦,你要问什么?我可以把问题转给Soumith。


新智元 :请问 PyTorch 除了是基于 Python,其它架构是否与 Torch 一样?

田渊栋 :基本C/C++这边都是用的torch原来的函数,但在架构上加了 autograd 这样就不用写backward 函数,可以自动动态生成computational graph 并且自动求导,反向传递后自动回收内存,这个让写程序变得更方便了。另一个重要的不同是权值(weights)和activation/gradInput分开了,这样同一个layer 可以复用很多次,存储的时候也不用 clear gradient,不像以前 torch 需要clone_many_times。另外从 numpy ndarray 可以转到torch.Tensor,不需要copy。


Lua这边一直有每个 thread 2G的限制,这个对写多线程的程序不是很有利。Python有GIL,所以一般用 multiprocessing 写程序,PyTorch针对这个有比较好的支持,比如支持进程间共享内存(这个对parameter server有利),支持shared Cuda context,等等。


我自己已经在用了,写了一个增强学习的框架,效果还是不错的。


新智元 :tensorflow也支持 python,请问这两种有什么区别呢?

Pytorch作者Soumith:像TensorFlow, Theano,Caffe以及CNTK都是静态的计算图结构。而PyTorch这边是动态地生成计算图结构(Computational Graph)的,所以可以在训练时动态改变图的拓扑,而不用改代码重新开始。


新智元:对GAN 和 深度强化学习支持怎么样?

田渊栋 :自带的tutorial里面已经有GAN的样本了,RL的框架我在写,在一些例子上已经达到了目前的最好水平。


新智元:您指的一些例子是什么类型的例子呢?


比如说OpenAI Gym Atari game Breakout-v0。


HN评论:深度学习库生态没有停滞


几个月前人们还说,深度学习库生态系统开始稳定。我从来不这么认为。深度学习库的最新前沿是确保对动态计算图的有效支持。


当需要完成的工作量是可变的时,动态计算图形出现。这可能是在我们处理文本时,一个例子是几个字,而另一个是文本的段落,或者当我们对可变大小的树结构执行操作时。这个问题在某些的领域尤其突出,例如自然语言处理。


PyTorch 很好地解决了这个问题,如 Chainer 和 DyNet。事实上,Pytorch 的构建直接从 Chainer 获得,尽管重构了并且设计得更快了。我已经看到所有这些在最近几个月,特别是在许多研究人员进行领域的前沿研究重新产生兴趣。当你使用新的架构时,你希望在框架允许范围内,获得最大的灵活性。


另一面,TensorFlow 不能很好地处理这些动态图问题。虽然有一些原始的动态结构,但它们不灵活,通常相当有限。在不久的将来,有计划允许 TensorFlow 变得更加动态,但添加它是一个挑战,特别是还要有效地做。


披露:我的Salesforce Research团队广泛使用Chainer,我的同事James Bradbury是PyTorch的贡献者,而它处于隐身模式。我们计划从Chainer过渡到PyTorch,以便将来的工作。


PyTorch 官网介绍


PyTorch 是一个 python 包,提供以下两个高级功能:


强大的 GPU 加速的张量计算(类似numpy)

构建基于 tape 的 autograd 系统的深度神经网络


在需要时,你可以再使用你喜欢的其他 python 包来扩展 PyTorch,例如 numpy,scipy 和Cython。


在粒度级别上,PyTorch 是一个由以下部分组成的库:




通常可以把 PyTorch 作为:


numpy 的替代,以使用 GPU 的能力;

一个深度学习研究平台,能够提供最大的灵活性和速度。


以下是更详细介绍:


一个支持 GPU 的 Tensor 库


如果你使用 numpy,那么你已经在使用 Tensors(也就是 ndarray)。






PyTorch 提供的 Tensors 支持 CPU 或 GPU,并为大量的计算提供加速。


我们提供多样的 tensor 程序以加速并适应用户的科学计算需要,如 slicing, 索引, 数学运算,线性代数,缩减。而且,速度非常快!


动态神经网络:基于 tape 的 Autograd


PyTorch 具有独特的构建神经网络的方法:使用并重放 tape recorder。


大多数框架,如 TensorFlow,Theano,Caffe 和 CNTK 都是静态的。使用者必须构建一个神经网络,并重复使用相同的结构。更改网络表现的方式意味着必须从头开始。


PyTorch 使用一种被称为反向模式自动微分(Reverse-mode auto-differentiation)的技术,能够让用户以零延迟或开销的方式任意改变网络表现。我们的灵感来源于几个相关话题如 autograd,autograd,Chainer 等的研究论文,包括当前的和过去的论文。


虽然这种技术不是 PyTorch 独有的,但它是迄今为止最快的实现之一。在研究中使用 PyTorch,你将得到最快的速度和最好的灵活性。




以Python为先


PyTorch 不是把 Python 绑到 C++ 框架上去,而是深度集成到 Python 语言中。你可以可以就像你用 numpy / scipy / scikit-learn 之类的一样使用。你可以用 Python 本身写新的神经网络层,可以用你最喜欢的库或者包,例如 Cython 和 Numba。我们的目标是尽量不要重新造轮子。


实践经验


PyTorch 符合直觉、好理解、易用。当你执行一行代码,它马上运行,不是跟异步的。当你进入 debug 或者收到错误信息进行 stack trace,都很容易理解。stack trace point 就是你代码的地方。我们不希望你因为差劲的 stack trace 或者 不同步和模糊的运行,而花上几个小时 debug。


又快又稳


PyTorch 具有最小的框架开销。 我们集成加速库,如英特尔MKL和NVIDIA(CuDNN,NCCL),以最大化速度。 在核心,它的CPU和GPU Tensor和神经网络后端(TH,THC,THNN,THCUNN)作为独立的库用 C99 API编写。


它们是成熟的,已经测试了多年。


因此,PyTorch是相当快 - 无论你运行小或大的神经网络。


相比 Torch 或其他一些框架,PyTorch的内存使用是非常高效的。 我们为GPU编写了自定义内存分配器,以确保您的深度学习模型具有最大的内存效率。 这使你能够训练比以前更大的深度学习模型。


轻松扩展


编写新的神经网络模块,或 PyTorch的Tensor API 的使用,其设计非常直接和最小的抽象。


你可以使用torch API或你最喜欢的基于numpy的库(如SciPy)在 Python 中编写新的神经网络层。


如果你想用C / C ++编写你的图层,我们提供一个基于cffi的扩展API,它是高效的,并且有最小的样板。没有需要编写的包装代码。


文章转自新智元公众号,原文链接

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
2月前
|
数据挖掘 PyTorch TensorFlow
|
17天前
|
机器学习/深度学习 算法 编译器
Python程序到计算图一键转化,详解清华开源深度学习编译器MagPy
【10月更文挑战第26天】MagPy是一款由清华大学研发的开源深度学习编译器,可将Python程序一键转化为计算图,简化模型构建和优化过程。它支持多种深度学习框架,具备自动化、灵活性、优化性能好和易于扩展等特点,适用于模型构建、迁移、部署及教学研究。尽管MagPy具有诸多优势,但在算子支持、优化策略等方面仍面临挑战。
44 3
|
2月前
|
Linux Android开发 iOS开发
开源的Python库,用于开发多点触控应用程序
Kivy是一款开源Python库,专为开发多点触控应用设计,支持Android、iOS、Linux、OS X和Windows等平台。本文将指导你使用Kivy创建“Hello World”应用并打包成Android APK。首先通过`pip install kivy`安装Kivy,然后创建并运行一个简单的Python脚本。接着,安装Buildozer并通过`buildozer init`生成配置文件,修改相关设置后,运行`buildozer -v android debug`命令打包应用。完成构建后,你将在`./bin/`目录下找到类似`your-app-debug.apk`的文件。
65 2
|
1月前
|
PyTorch 算法框架/工具 Python
Pytorch学习笔记(十):Torch对张量的计算、Numpy对数组的计算、它们之间的转换
这篇文章是关于PyTorch张量和Numpy数组的计算方法及其相互转换的详细学习笔记。
34 0
|
1月前
|
并行计算 Ubuntu 算法
Ubuntu18 服务器 更新升级CUDA版本 pyenv nvidia ubuntu1804 原11.2升级到PyTorch要求12.1 全过程详细记录 apt update
Ubuntu18 服务器 更新升级CUDA版本 pyenv nvidia ubuntu1804 原11.2升级到PyTorch要求12.1 全过程详细记录 apt update
99 0
|
2月前
|
人工智能 自然语言处理 文字识别
MinerU-大语言语料处理神器,CPU/GPU均可跑,开源免费“敲”好用
在7月4日举行的WAIC 2024科学前沿主论坛上,书生·浦语2.5正式发布,面向大模型研发与应用的全链条工具体系同时迎来升级。
MinerU-大语言语料处理神器,CPU/GPU均可跑,开源免费“敲”好用
|
3月前
|
存储 Python 容器
python中的h5py开源库的使用
python中的h5py开源库的使用
22 1
|
3月前
|
机器学习/深度学习 并行计算 PyTorch
GPU 加速与 PyTorch:最大化硬件性能提升训练速度
【8月更文第29天】GPU(图形处理单元)因其并行计算能力而成为深度学习领域的重要组成部分。本文将介绍如何利用PyTorch来高效地利用GPU进行深度学习模型的训练,从而最大化训练速度。我们将讨论如何配置环境、选择合适的硬件、编写高效的代码以及利用高级特性来提高性能。
658 1
|
3月前
|
算法 数据处理 数据安全/隐私保护
|
2月前
|
机器学习/深度学习 数据挖掘 TensorFlow
解锁Python数据分析新技能,TensorFlow&PyTorch双引擎驱动深度学习实战盛宴
在数据驱动时代,Python凭借简洁的语法和强大的库支持,成为数据分析与机器学习的首选语言。Pandas和NumPy是Python数据分析的基础,前者提供高效的数据处理工具,后者则支持科学计算。TensorFlow与PyTorch作为深度学习领域的两大框架,助力数据科学家构建复杂神经网络,挖掘数据深层价值。通过Python打下的坚实基础,结合TensorFlow和PyTorch的强大功能,我们能在数据科学领域探索无限可能,解决复杂问题并推动科研进步。
62 0

热门文章

最新文章