【Nature】AlphaGo赢了围棋,但玩量子计算游戏人的直觉强过机器

简介:

Nature日前刊发论文,丹麦奥胡斯大学的科学家设计了一款量子计算游戏,征召300名普通公众参与,结果发现在玩这款游戏时人类在许多方面都强过计算机,但具体原因为何目前还不得而知。这一研究表明,在解决诸如量子计算这样复杂、超出常理的问题时,人类智能仍然超越机器智能,并且结合二者或将得到更好的结果。

 

之前新智元发表过一篇文章:AlphaGo输了,但16%的人对人类未来感到绝望。今天我们带来了一条好消息:在玩一款量子计算游戏时,普通人的表现要优于最优秀的计算机。

 

Nature日前刊发论文,丹麦奥胡斯大学的科学家想要制造一款可扩展的量子计算机原型,但苦于无法找到有效的量子算法。因此,他们想到了借助群众的力量——此前已经有科研项目(比如蛋白质折叠)通过集合公众玩游戏得到了解决——设计了一款叫做“量子移动”(Quantum Moves)电子游戏,其通关策略就是研究者想要的有效量子算法。

 

在实验中,研究者召集到300名公众,这些人最大的特征就是——都是普通人:没有量子物理背景,也没有高深的数学造诣,年龄、职业五花八门。对他们而言,所做的就是玩一款电子游戏。



游戏中,玩家手指(黑色指针标示处)触碰的地方会形成一个波谷,玩家要用这个新的波将右边波里的液体带回起点,液体象征处于量子状态的原子。玩家必须找到一条路径,以最快的速度实现液体完好转移,避免出现上图中最底下一幅的情况:仍然有液体残留在右边的波里。这个游戏情景很好地模拟了量子算法所需,让能量(液体)保持不变的情况下,从一个地方尽快转移到另一个地方(从右边的波转移到左边的波)。参考文首动图。来源:nature.com


结果发现,在玩这款游戏时,人类玩家的解决方案不但要优于计算机所设计的最佳策略,而且人类玩家在量子计算速度上也比计算机更快。不仅如此,把人类玩家的解决方案输入计算机进行优化后,超过半数的优化结果都要优于计算机原来的算法。同时,研究者将人类玩家解法和计算机算法相结合,得出了混合算法。其中,最优的两种混合算法比单凭计算机产生的最优算法要快很多


研究者随后对这些人类玩家及其通关策略做了进一步分析。结果发现,从表面上看,对物理更感兴趣的人,游戏玩得也更好。但是,人类玩家对量子物理的了解程度与游戏表现无关。而且,虽然男性每天玩游戏次数更多,但综合看女性通关成绩比男性更好。


论文通讯作者 Jacob Sherson 在接受 nature 记者采访时表示:人类策略之所以优于计算机算法,是因为人类更能把握问题的本质。Sherson 还表示,他们的这一研究结果表明科学家以前可能低估了人类智能;此外,在解决量子物理问题时,借助公众的智慧或许是一个不错的方法。

 

芬兰图尔库大学的量子物理学研究者 Sabrina Maniscalco 在 nature 发表评论指出:这个游戏本身设计得很巧妙,把一个具体的量子计算问题游戏化,得到了普通人胜过计算机的结果;但这一结论是否具普适性还有待商榷。不过,Maniscalco 认为 Sherson 等人的思路值得参考。

 

至于为什么不具备量子物理背景并且数学知识也不够资深的人能够表现得比机器还要好,Maniscalco 认为这是因为在游戏当中人类玩家可以尝试与现实世界不同的解决方案,或许正是这种跳出常理外的思维,也就是直觉帮助了他们。

 

其他量子物理研究者也表示,他们对普通人也能靠直觉解决量子物理问题感到意外,但这一结果本身并非出乎意料,因为科学家也经常凭直觉解决量子物理问题,至少在数学层面上是如此。

 

虽然没有弄清具体原因,这篇论文表明至少在这款量子计算游戏上,普通人比计算机要强,而且结合人类智能和机器智能可以得到更好的算法。

文章转载自新智元公众号 原文链接

目录
打赏
0
相关文章
打败阿根廷的究竟是谁
2022年卡塔尔世界杯正在如火如茶的进行着。在今年的世界杯中,有两个令人意外的点,一个是日本队击败的德国队,另外一点是沙特队战胜了实力强盛的阿根廷队。 有人说打败阿根廷队的不是沙特队,而是科技------"半自动越位"技术。
148 0
史上首次,强化学习算法控制核聚变登上Nature:DeepMind让人造太阳向前一大步
史上首次,强化学习算法控制核聚变登上Nature:DeepMind让人造太阳向前一大步
229 0
Reddit热议:15岁高中生用神经网络建立生命进化“新宇宙”
一位年仅15岁波兰高中生利用神经网络和遗传算法模拟出了人造生命的繁衍和进食活动,将视频发在了Youtube上。reddit网友纷纷表示鼓励,并表示,过个几百万年,说不定这个网络能够进化出战争和国家!
226 0
Reddit热议:15岁高中生用神经网络建立生命进化“新宇宙”
1:2,李世石最后一战被AI击败,唯一战胜过AlphaGo的人退役了
退役赛的最后一局,李世石回到了自己的家乡。对战之地距离李世石的出生地飞禽岛 40 多公里,他曾在飞禽岛度过了他的童年时光,也是在这里决定成为职业围棋选手。
208 0
1:2,李世石最后一战被AI击败,唯一战胜过AlphaGo的人退役了
AlphaGo可能会发现另外一种围棋的美,是我们想象不到的
明天 DeepMind AlphaGo 与韩国李世石九段的比赛有着重要的历史意义——这是首次人工智能在人类最复杂的博弈游戏中挑战最高级别的人类选手。而拉开这一帷幕的是去年欧洲围棋冠军樊麾与 AlphaGo的对战。机器之心有幸采访到了樊麾老师,在与他的长谈中,樊麾老师详细回顾了他与 AlphaGo 交战的精彩故事,畅谈了他对人工智能技术的感触,以及对围棋与人生的哲学思考。樊麾老师将作为裁判长现场督战「AlphaGo VS 李世石」。这里,我们希望用樊麾老师这番丰富且深刻的思考和遐想来拉开这场「世纪大战」,而更加重要的是,我们相信樊麾老师的长篇精彩分享一定可以给大家带来超越比赛本身的启迪。
232 0
AlphaGo可能会发现另外一种围棋的美,是我们想象不到的
AlphaGo 3:0 战胜李世石,机器与人类的共同胜利
在刚刚结束的AlphaGo对战李世石第三局中,AlphaGo战胜李世石,从而最终获得了本次挑战赛的胜利(依然要比完五局),也预示着人工智能首次在围棋领域击败了人类顶尖选手。
476 0
深度 | 打败围棋冠军后,机器智能下一步能战胜黑客吗?
阿里妹导读:从深蓝战胜象棋冠军到AlphaGo战胜围棋冠军,每一次机器智能在特定领域战胜人类,都会引发整个社会的广泛关注。洞察了棋类博弈真相的机器智能,接下来能洞察网络安全的真相并且在黑客博弈中战胜人类吗?在机器智能炙手可热的今天,或许我们该静下心来,去理解机器智能的本质、网络安全的困境以及未来二者结合的挑战。
12726 0

新智元

+ 订阅