iOS中线程Call Stack的捕获和解析(一)

简介:

http://blog.csdn.net/jasonblog/article/details/49909209这里对上个月做的一个技术项目做部分技术小结,这篇文章描述的功能和我们在使用Xcode进行调试时点击暂停的效果类似。

一、获取任意一个线程的Call Stack

如果要获取当前线程的调用栈,可以直接使用现有API:[NSThread callStackSymbols]

但是并没有相关API支持获取任意线程的调用栈,所以只能自己编码实现。

1. 基础结构

一个线程的调用栈是什么样的呢?

我的理解是应该包含当前线程的执行地址,并且从这个地址可以一级一级回溯到线程的入口地址,这样就反向构成了一条链:线程入口执行某个方法,然后逐级嵌套调用到当前现场。

Call_stack_layout_svg(图片来源于维基百科)

如图所示,每一级的方法调用,都对应了一张活动记录,也称为活动帧。也就是说,调用栈是由一张张帧结构组成的,可以称之为栈帧。

我们可以看到,一张栈帧结构中包含着Return Address,也就是当前活动记录执行结束后要返回的地址(展开)。

那么,在我们获取到栈帧后,就可以通过返回地址来进行回溯了。

2. 指令指针和基址指针

我们明确了两个目标:(1)当前执行的指令,(2)当前栈帧结构。

以x86为例,寄存器用途如下:

SP/ESP/RSP: Stack pointer for top address of the stack.
BP/EBP/RBP: Stack base pointer for holding the address of the current stack frame.
IP/EIP/RIP: Instruction pointer. Holds the program counter, the current instruction address.

可以看到,我们可以通过指令指针来获取当前指令地址,以及通过栈基址指针获取当前栈帧地址。

那么问题来了,我们怎么获取到相关寄存器呢?

3. 线程执行状态

考虑到一个线程被挂起时,后续继续执行需要恢复现场,所以在挂起时相关现场需要被保存起来,比如当前执行到哪条指令了。

那么就要有相关的结构体来为线程保存运行时的状态,经过一番查阅,得到如下信息:

The function thread_get_state returns the execution state (e.g. the machine registers) of target_thread as specified by flavor.

Function - Return the execution state for a thread.

SYNOPSIS

kern_return_t   thread_get_state
                (thread_act_t                     target_thread,
                 thread_state_flavor_t                   flavor,
                 thread_state_t                       old_state,
                 mach_msg_type_number_t         old_state_count);
/*
 * THREAD_STATE_FLAVOR_LIST 0
 *  these are the supported flavors
 */
#define x86_THREAD_STATE32      1
#define x86_FLOAT_STATE32       2
#define x86_EXCEPTION_STATE32       3
#define x86_THREAD_STATE64      4
#define x86_FLOAT_STATE64       5
#define x86_EXCEPTION_STATE64       6
#define x86_THREAD_STATE        7
#define x86_FLOAT_STATE         8
#define x86_EXCEPTION_STATE     9
#define x86_DEBUG_STATE32       10
#define x86_DEBUG_STATE64       11
#define x86_DEBUG_STATE         12
#define THREAD_STATE_NONE       13
/* 14 and 15 are used for the internal x86_SAVED_STATE flavours */
#define x86_AVX_STATE32         16
#define x86_AVX_STATE64         17
#define x86_AVX_STATE           18

所以我们可以通过这个API搭配相关参数来获得想要的寄存器信息:

bool jdy_fillThreadStateIntoMachineContext(thread_t thread, _STRUCT_MCONTEXT *machineContext) {
    mach_msg_type_number_t state_count = x86_THREAD_STATE64_COUNT;
    kern_return_t kr = thread_get_state(thread, x86_THREAD_STATE64, (thread_state_t)&machineContext->__ss, &state_count);
    return (kr == KERN_SUCCESS);
}

这里引入了一个结构体叫_STRUCT_MCONTEXT

4. 不同平台的寄存器

_STRUCT_MCONTEXT在不同平台上的结构不同:

x86_64,如iPhone 6模拟器:

_STRUCT_MCONTEXT64
{
    _STRUCT_X86_EXCEPTION_STATE64   __es;
    _STRUCT_X86_THREAD_STATE64  __ss;
    _STRUCT_X86_FLOAT_STATE64   __fs;
};

_STRUCT_X86_THREAD_STATE64
{
    __uint64_t  __rax;
    __uint64_t  __rbx;
    __uint64_t  __rcx;
    __uint64_t  __rdx;
    __uint64_t  __rdi;
    __uint64_t  __rsi;
    __uint64_t  __rbp;
    __uint64_t  __rsp;
    __uint64_t  __r8;
    __uint64_t  __r9;
    __uint64_t  __r10;
    __uint64_t  __r11;
    __uint64_t  __r12;
    __uint64_t  __r13;
    __uint64_t  __r14;
    __uint64_t  __r15;
    __uint64_t  __rip;
    __uint64_t  __rflags;
    __uint64_t  __cs;
    __uint64_t  __fs;
    __uint64_t  __gs;
};

x86_32,如iPhone 4s模拟器:

_STRUCT_MCONTEXT32
{
    _STRUCT_X86_EXCEPTION_STATE32   __es;
    _STRUCT_X86_THREAD_STATE32  __ss;
    _STRUCT_X86_FLOAT_STATE32   __fs;
};

_STRUCT_X86_THREAD_STATE32
{
    unsigned int    __eax;
    unsigned int    __ebx;
    unsigned int    __ecx;
    unsigned int    __edx;
    unsigned int    __edi;
    unsigned int    __esi;
    unsigned int    __ebp;
    unsigned int    __esp;
    unsigned int    __ss;
    unsigned int    __eflags;
    unsigned int    __eip;
    unsigned int    __cs;
    unsigned int    __ds;
    unsigned int    __es;
    unsigned int    __fs;
    unsigned int    __gs;
};

ARM64,如iPhone 5s:

_STRUCT_MCONTEXT64
{
    _STRUCT_ARM_EXCEPTION_STATE64   __es;
    _STRUCT_ARM_THREAD_STATE64  __ss;
    _STRUCT_ARM_NEON_STATE64    __ns;
};

_STRUCT_ARM_THREAD_STATE64
{
    __uint64_t    __x[29];  /* General purpose registers x0-x28 */
    __uint64_t    __fp;     /* Frame pointer x29 */
    __uint64_t    __lr;     /* Link register x30 */
    __uint64_t    __sp;     /* Stack pointer x31 */
    __uint64_t    __pc;     /* Program counter */
    __uint32_t    __cpsr;   /* Current program status register */
    __uint32_t    __pad;    /* Same size for 32-bit or 64-bit clients */
};

ARMv7/v6,如iPhone 4s:

_STRUCT_MCONTEXT32
{
    _STRUCT_ARM_EXCEPTION_STATE __es;
    _STRUCT_ARM_THREAD_STATE    __ss;
    _STRUCT_ARM_VFP_STATE       __fs;
};

_STRUCT_ARM_THREAD_STATE
{
    __uint32_t  __r[13];    /* General purpose register r0-r12 */
    __uint32_t  __sp;       /* Stack pointer r13 */
    __uint32_t  __lr;       /* Link register r14 */
    __uint32_t  __pc;       /* Program counter r15 */
    __uint32_t  __cpsr;     /* Current program status register */
};

可以对照《iOS ABI Function Call Guide》,其中在ARM64相关章节中描述到:

The frame pointer register (x29) must always address a valid frame record, although some functions–such as leaf functions or tail calls–may elect not to create an entry in this list. As a result, stack traces will always be meaningful, even without debug information

而在ARMv7/v6上描述到:

The function calling conventions used in the ARMv6 environment are the same as those used in the Procedure Call Standard for the ARM Architecture (release 1.07), with the following exceptions:

*The stack is 4-byte aligned at the point of function calls.
Large data types (larger than 4 bytes) are 4-byte aligned.
Register R7 is used as a frame pointer
Register R9 has special usage.*

所以,通过了解以上不同平台的寄存器结构,我们可以编写出比较通用的回溯功能。

5. 算法实现

/**
 * 关于栈帧的布局可以参考:
 * https://en.wikipedia.org/wiki/Call_stack
 * http://www.cs.cornell.edu/courses/cs412/2008sp/lectures/lec20.pdf
 * http://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64/
 */
typedef struct JDYStackFrame {
    const struct JDYStackFrame* const previous;
    const uintptr_t returnAddress;
} JDYStackFrame;

//

int jdy_backtraceThread(thread_t thread, uintptr_t *backtraceBuffer, int limit) {
    if (limit <= 0) return 0;

    _STRUCT_MCONTEXT mcontext;
    if (!jdy_fillThreadStateIntoMachineContext(thread, &mcontext)) {
        return 0;
    }

    int i = 0;
    uintptr_t pc = jdy_programCounterOfMachineContext(&mcontext);
    backtraceBuffer[i++] = pc;
    if (i == limit) return i;

    uintptr_t lr = jdy_linkRegisterOfMachineContext(&mcontext);
    if (lr != 0) {
        /* 由于lr保存的也是返回地址,所以在lr有效时,应该会产生重复的地址项 */
        backtraceBuffer[i++] = lr;
        if (i == limit) return i;
    }

    JDYStackFrame frame = {0};
    uintptr_t fp = jdy_framePointerOfMachineContext(&mcontext);
    if (fp == 0 || jdy_copyMemory((void *)fp, &frame, sizeof(frame)) != KERN_SUCCESS) {
        return i;
    }

    while (i < limit) {
        backtraceBuffer[i++] = frame.returnAddress;
        if (frame.returnAddress == 0
            || frame.previous == NULL
            || jdy_copyMemory((void *)frame.previous, &frame, sizeof(frame)) != KERN_SUCCESS) {
            break;
        }
    }

    return i;
}

如上。

二、编码实现对一个地址进行符号化解析

后续iOS中线程Call Stack的捕获和解析(二)

目录
相关文章
|
10月前
|
Java 调度 Android开发
安卓与iOS开发中的线程管理差异解析
在移动应用开发的广阔天地中,安卓和iOS两大平台各自拥有独特的魅力。如同东西方文化的差异,它们在处理多线程任务时也展现出不同的哲学。本文将带你穿梭于这两个平台之间,比较它们在线程管理上的核心理念、实现方式及性能考量,助你成为跨平台的编程高手。
|
10月前
|
存储 安全 数据安全/隐私保护
深入解析iOS 14隐私保护功能:用户数据安全的新里程碑
随着数字时代的到来,个人隐私保护成为全球关注的焦点。苹果公司在最新的iOS 14系统中引入了一系列创新的隐私保护功能,旨在为用户提供更透明的数据使用信息和更强的控制权。本文将深入探讨iOS 14中的几项关键隐私功能,包括App跟踪透明性、简化的隐私设置以及增强的系统安全性,分析它们如何共同作用以提升用户的隐私保护水平。
547 3
|
11月前
|
API Android开发 iOS开发
深入探索Android与iOS的多线程编程差异
在移动应用开发领域,多线程编程是提高应用性能和响应性的关键。本文将对比分析Android和iOS两大平台在多线程处理上的不同实现机制,探讨它们各自的优势与局限性,并通过实例展示如何在这两个平台上进行有效的多线程编程。通过深入了解这些差异,开发者可以更好地选择适合自己项目需求的技术和策略,从而优化应用的性能和用户体验。
|
11月前
|
数据安全/隐私保护 iOS开发 开发者
iOS 14隐私保护新特性深度解析####
随着数字时代的到来,隐私保护已成为全球用户最为关注的问题之一。苹果在最新的iOS 14系统中引入了一系列创新功能,旨在增强用户的隐私和数据安全。本文将深入探讨iOS 14中的几大隐私保护新特性,包括App跟踪透明度、剪贴板访问通知和智能防追踪功能,分析这些功能如何提升用户隐私保护,并评估它们对开发者和用户体验的影响。 ####
|
11月前
|
开发框架 Dart Android开发
安卓与iOS的跨平台开发:Flutter框架深度解析
在移动应用开发的海洋中,Flutter作为一艘灵活的帆船,正引领着开发者们驶向跨平台开发的新纪元。本文将揭开Flutter神秘的面纱,从其架构到核心特性,再到实际应用案例,我们将一同探索这个由谷歌打造的开源UI工具包如何让安卓与iOS应用开发变得更加高效而统一。你将看到,借助Flutter,打造精美、高性能的应用不再是难题,而是变成了一场创造性的旅程。
|
3月前
|
安全 算法 Java
Java 多线程:线程安全与同步控制的深度解析
本文介绍了 Java 多线程开发的关键技术,涵盖线程的创建与启动、线程安全问题及其解决方案,包括 synchronized 关键字、原子类和线程间通信机制。通过示例代码讲解了多线程编程中的常见问题与优化方法,帮助开发者提升程序性能与稳定性。
152 0
|
3月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
4月前
|
Java 数据挖掘 调度
Java 多线程创建零基础入门新手指南:从零开始全面学习多线程创建方法
本文从零基础角度出发,深入浅出地讲解Java多线程的创建方式。内容涵盖继承`Thread`类、实现`Runnable`接口、使用`Callable`和`Future`接口以及线程池的创建与管理等核心知识点。通过代码示例与应用场景分析,帮助读者理解每种方式的特点及适用场景,理论结合实践,轻松掌握Java多线程编程 essentials。
260 5
|
8月前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
278 20
|
8月前
|
安全 Java C#
Unity多线程使用(线程池)
在C#中使用线程池需引用`System.Threading`。创建单个线程时,务必在Unity程序停止前关闭线程(如使用`Thread.Abort()`),否则可能导致崩溃。示例代码展示了如何创建和管理线程,确保在线程中执行任务并在主线程中处理结果。完整代码包括线程池队列、主线程检查及线程安全的操作队列管理,确保多线程操作的稳定性和安全性。

热门文章

最新文章

推荐镜像

更多
  • DNS