基于GPU并行处理的优势,Tesla P100能够实现数百CPU服务器节点性能。DGX-1采用NVIDIA新Pascal架构的Tesla P100显卡系列,数据处理速度是NVIDIA 此前Maxwell架构——才刚于2014年推出 ——显卡系列的12倍。据NVIDIA官网消息,DGX-1共装入8组各内建16BG存储器的Tesla P100显卡,配置英特尔 E5-2698 v3 处理器,7 TB的SSD硬盘用作深度学习高速缓存,系统存储器部分最大可支持512GB DDR4的内存容量,半精度条件每秒浮点运算峰值性能170万亿次,运算能力相当于250台X86服务器搭建的机群。不过,这台超级计算机的功耗高达3200W,让新智元记者认为其能效比或许是个问题。
在NVIDIA官方新闻中,Facebook人工智能实验室负责人Yann LeCun在评论Pascal架构时表示:“NVIDIA GPU正在加速人工智能的发展进程。随着神经网络越变越大,我们不仅需要内存更大、速度更快的GPU,也需要大幅提升GPU间的通信速度以及能够利用降低精度进行运算的硬件。这些正是Pascal所具备的特点。”
软件方面,DGX-1装载了一套针对深度学习进行优化的软件功能,包括用于设计深度神经网络的NVIDIA深度学习GPU训练系统(Deep Learning GPU Training System,DIGITS),以及最新发布的第5版CUDA深度神经网络库(CUDA Deep Neural Network library,cuDNN)。此外,DGX-1内提供一些优化版的广泛应用深度学习框架,如Caffe、Theano、Torch。系统还搭配一套云端存取管理工具、软件更新,以及一个容器化应用库。
测试结果
黄仁勋透露,NVIDIA与加州大学、斯坦福大学、麻省理工大学等领先科研团队达成合作,将DGX-1提供给后者用于进行深度学习训练。目前P100芯片已经投入量产,预计今年就会在云计算公司启用。此外,IBM、Dell、HP等主流服务器厂商也在生产搭载Tesla P100显卡的服务器,预计2017年第一季度上市。
文章转载自新智元公众号 原文链接