为什么说,华尔街投行的AI金融交易机器并非那么高大上?

简介:

为什么说,华尔街投行的AI金融交易机器并非那么高大上?

人工智能是块砖,哪里好用往哪儿搬。这次搬到了量化交易。

近日,一则摩根大通将AI应用于交易执行的消息再掀波澜。据外媒报道,该加持了AI的机器名为LOXM,利用了深度强化学习技术,核心功能是以最优的价格和最快的速度执行股票交易指令。它从过去数十亿笔交易(既有真实交易,也有模拟交易)中汲取经验来处理各种问题,包括如何在抛出大量股票的情况下而不引起市场波动。

第一季度开始,摩根大通将LOXM应用到欧洲股票业务,声称“应用效果不错”,并计划第四季度在亚洲和美国启用。

从技术和市场角度拆解AI应用

对此,毕业于普林斯顿大学运筹与金融工程系(博士),曾任美林证券投顾算法首席架构师,现任清华金融科技中心兼职教授,财富引擎科技创始人的林常乐告诉雷锋网,“在我看来,摩根大通的AI更像是一种包装,技术并没有那么神奇。”

量化交易最早出现在上世纪70年代,后续衍化出高频交易、程序化交易、自动化交易等多种交易方式。他继续解释道,在交易执行中利用计算机的目标很明确,即优化交易成本。买卖数量越多,影响面越广,交易成本越高。

“自动化交易就是在找交易数量与交易成本之间的优化空间,可以做拟合和分析,从而节省交易成本。因为市场上挂单有限,一次性买大量股票,成本不是简单地“1+1=2”,很可能是等于3,分批次购买可以控制成本。此外,交易频次比较快,还可以进行短期预测。”

总的来说,自动化交易的作用主要体现在提高工作效率,降低人力以及交易成本。

近年来,AI风靡全球,成为各产业界争相拥抱的前沿科技,自然也包括投资领域。但万变不离其宗,从线性回归、传统算法到应用AI,自动化交易的原理没有变化。

林常乐坦言,

“事实上,自动化交易是硬件驱动,硬件的作用大于算法。而在算法方面,只是将传统算法替换成了深度学习、强化学习等相关技术而已。这种变化是一种改良,还谈不上‘质’的变革。”

目前,AI处于弱人工智能阶段。虽然机器学习等已经在金融资管理领域有了一定的应用,但业界共识是,这还非常稚嫩。

许多优秀的交易策略还是由人来制定,机器用于辅助决策或者执行。中科院计算机副研究员罗平表示,“一些真正赚钱的基金经理的操作逻辑,可能只有一两个特征,但他们就能基于这些简单的逻辑闷声发大财。”

在林常乐看来,机器学习现在的成就主要体现在计算机视觉CV、自然语言处理NLP领域,这些领域的特征是信息量大于噪音。而随着模型的完善,计算能力的发展,CV和NLP的突破是理所当然。

“但金融领域非常嘈杂,噪音很大,市场的有效信息很少,且处于时刻的变化中。不管是现在,还是未来,我认为‘AI取代人类’的可能性也非常渺茫。”

“如今AI介入交易执行的具体步骤并不多,更多是自动化。”财鲸联合创始人,康奈尔大学博士王蓁与林常乐的观点不谋而合。更有业内交易员评价说,“摩根大通的AI交易软件可能就是一次PR。”

而事实上,摩根大通并非第一家将AI应用于交易执行的金融机构。高盛纽约现金股票交易员从2000年的600人到2017年的2人刷足了今年二月头条。但摩根大通的竞争对手不只是它。据林常乐透露,在量化交易领域,一些偏技术公司尤其是高频交易公司的表现能力更优于这些投行。例如量化交易巨头如骑士资本KCG、Virtu Financial、Citadel 等。这些公司的竞争实力更加强劲,“投行已经被一些技术领先者淘汰。”

我们时常看见“AI将要取代交易员?!”的言论见报,但值得注意的是,被取代的都是执行客户订单的职位。在这方面,机器拥有严格执行命令,大单高频操作等人类无法比拟的优势。

而那些人没有看到的是,在高盛交易员锐减598人的背后,增加了200名研发自动交易程序的工程师。被取代的是“可以被取代的”,行业一直向前。犹如当年ATM机的盛行革新了银行服务,取代了一部分柜员。量化投资同样适用,技术和算法的革新推动着行业向前发展。

AI应用新气象

与此同时,林常乐指出,自动化交易实际上已经不再是金融机构的优势领域。在美国体现为,市场竞争激烈,业务利润率不断下行。该领域的天花板似乎可以预见。

自动化交易或者说量化投资,目前已经拥有比较成熟的工具。除此外,他告诉雷锋网,此前在美林证券还看到各部门在不同程度地应用AI。在财富管理领域的明星应用当属智能投顾。这也是技术性公司最偏爱的接入领域。林常乐与深耕运筹学的杉数科技就有着一系列合作,将学界最前沿的技术应用于资产配置的计算等方面。

据雷锋网(公众号:雷锋网)AI金融评论此前报道,关于财富和资产管理对技术预期发展路线的问题,Celent高级分析师William Trout曾指出,

简单地说,智能投顾一定程度上已经瓦解了这个行业,因为他们提供了更加高度定制化、数字化、低成本的财富管理体验,这足以让他们能够如所需要地快速拓展市场规模。

William Trout认为,理财经理人最佳的应对方式是化为己用,在规模化扩展与客户定制化服务之间寻找平衡。

用他话说,“他们应该为那些本金低于100或500万美金的低净值客户也提供个性化服务。这个技术过程包括你将如何发现投资者的不同需求,以及如何为他们做好服务。”


本文作者:伊莉

本文转自雷锋网禁止二次转载,原文链接

相关文章
|
8天前
|
机器学习/深度学习 人工智能 算法
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
FinRobot 是一个开源的 AI Agent 平台,专注于金融领域的应用,通过大型语言模型(LLMs)构建复杂的金融分析和决策工具,提供市场预测、文档分析和交易策略等多种功能。
82 13
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
AI在金融领域的应用:智能投资顾问
【10月更文挑战第31天】随着AI技术的快速发展,智能投资顾问在金融领域的应用越来越广泛。本文介绍了智能投资顾问的定义、工作原理、优势及未来发展趋势,探讨了其在个人财富管理、养老金管理、机构风险管理及量化交易中的典型应用,并分析了面临的挑战与机遇。智能投资顾问以其高效、低成本、个性化和全天候服务的特点,正逐步改变传统投资管理方式。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI与艺术创作:机器的艺术天赋
【10月更文挑战第31天】本文探讨了AI在艺术创作中的应用及其独特“艺术天赋”。从绘画、音乐、文学到设计,AI通过计算机视觉、自然语言处理和生成对抗网络等技术,逐渐展现出强大的创作能力。尽管面临原创性、审美标准和法律伦理等挑战,AI艺术创作仍为艺术界带来了新的视角和灵感,未来有望与人类艺术家共同推动艺术的创新与发展。
|
7月前
|
机器学习/深度学习 人工智能 搜索推荐
《百炼成金-大金融模型新篇章》––09.金融级AI原生的发展
百炼必定成金,新质生产力会催生新质劳动力,谨以此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。
|
3月前
|
数据采集 人工智能 自然语言处理
AI Agent 金融助理0-1 Tutorial 利用Python实时查询股票API的FinanceAgent框架构建股票(美股/A股/港股) AI Finance Agent
金融领域Finance AI Agents方面的工作,发现很多行业需求和用户输入的 query都是和查询股价/行情/指数/财报汇总/金融理财建议相关。如果需要准确的 金融实时数据就不能只依赖LLM 来生成了。常规的方案包括 RAG (包括调用API )再把对应数据和prompt 一起拼接送给大模型来做文本生成。稳定的一些商业机构的金融数据API基本都是收费的,如果是以科研和demo性质有一些开放爬虫API可以使用。这里主要介绍一下 FinanceAgent,github地址 https://github.com/AI-Hub-Admin/FinanceAgent
|
3月前
|
数据采集 人工智能 算法
近五千支队伍决战AI之巅, AFAC2024金融智能创新大赛在2024 Inclusion · 外滩大会完美收官
自从2022年12月ChatGPT上线以来,全球掀起了一场你追我赶的AI竞赛,不少国家都在全力以赴,抢占制高点。
|
4月前
|
机器学习/深度学习 人工智能 算法
AI伦理边界:当机器决策超越人类认知
【9月更文挑战第5天】AI伦理边界的探索是一个复杂而艰巨的任务,需要政府、企业、学术界和社会各界的共同努力。随着AI技术的不断发展,我们有理由相信,通过不断的探索和实践,我们一定能够找到一条既符合伦理道德又能够充分发挥AI技术潜力的道路。在未来的日子里,让我们携手并进,共同迎接AI技术带来的机遇与挑战。
|
4月前
|
机器学习/深度学习 人工智能 开发框架
智能ai量化高频策略交易软件、现货合约跟单模式开发技术规则
该项目涵盖智能AI量化高频策略交易软件及现货合约跟单模式开发,融合人工智能、量化交易与软件工程。软件开发包括需求分析、技术选型、系统构建、测试部署及运维;跟单模式则涉及功能定义、策略开发、交易执行、终端设计与市场推广,确保系统高效稳定运行。
|
5月前
|
机器学习/深度学习 数据采集 人工智能
【AI在金融科技中的应用】详细介绍人工智能在金融分析、风险管理、智能投顾等方面的最新应用和发展趋势
人工智能(AI)在金融领域的应用日益广泛,对金融分析、风险管理和智能投顾等方面产生了深远影响。以下是这些领域的最新应用和发展趋势的详细介绍
598 1
|
6月前
|
机器学习/深度学习 人工智能 算法
AI与创意写作:机器如何学习讲故事
【7月更文挑战第8天】在数字时代的浪潮中,人工智能已经从实验室走向了文学创作的领域。本文将探讨AI在创意写作中的应用,揭示它如何通过算法模仿人类的思维模式,生成引人入胜的故事。我们将一同穿梭于代码与文字之间,见证一个由数据驱动的叙事新纪元的诞生。