《大数据原理:复杂信息的准备、共享和分析》一一2.11 经验教训

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本节书摘来自华章出版社《大数据原理:复杂信息的准备、共享和分析》一 书中的第2章,第2.11节,作者:[美] 朱尔斯 J. 伯曼(Jules J. Berman)著 ,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.11 经验教训
每件事以前都说过,但因为没有人听,所以我们只好回到起点,一遍又一遍地重新开始。
―Andre Gide

习惯于使用较小的数据项目的大数据管理人员往往忽视了标识问题。本章中描述的最重要的想法很值得重复,其中许多想法对于那些生活在大数据混乱领域之外的人来说是反直觉的和奇怪的。
1.所有的大数据资源都可以被想象为对于数据对象和数据相关事件的一个标识符系统(即时间事务)。大数据的数据资源可以被想象为连接到标识符的字符序列。
2.如果没有一个适当的标识系统,大数据资源就没有价值。资源内的数据不能被信任。
3.标识符是分配给一个数据对象的唯一的字母数字序列。
4.数据对象是数据的集合,它包含自我描述信息,以及一个或多个数据值。数据对象应当与一个唯一的标识符相关联。
5.去标识化是从可能的记录里链接到该记录对象的公共名称的数据记录,并进行信息剥离的过程。
6.去标识化不应与剥离标识符记录的行为相混淆。一个去标识化的记录必须具有相关的标识符,作为一个标识的数据记录就必须有一个标识符。
7.没有标识,就不会有去标识,也没有重新标识。
8.重新标识是指将数据记录与去标识化的记录相关联的公共名称的分配。重新标识有时需要验证一个记录的内容,或提供所必需的一个去标识化的数据记录的对象的信息。重新标识总是需要审批和监督。
9.当一个去标识化的数据集不包含任何唯一的记录(即每个记录有一个或多个附加记录从中不能被区分开来,除了其指定的标识符序列)时,那么就不可能恶意揭开一个去标识化的记录的公共名称。
10.数据清除器从数据记录中删除不需要的信息,包括个人性质的信息,以及与数据记录目的不直接相关的任何信息。数据去标识化是一个过程,其中记录主体的公共名称将被删除(见术语表,Data cleaning,Data scrubbing)。
11.速度最快的数据清除方法包括准备已证实的单词和短语的列表,列表可以在数据记录中被保留,并删除未核准名单中发现的每一个单词或短语。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
23天前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
2月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
2月前
|
存储 SQL 分布式计算
终于!大数据分析不用再“又要快又要省钱”二选一了!Dataphin新功能太香了!
Dataphin推出查询加速新功能,支持用StarRocks等引擎直连MaxCompute或Hadoop查原始数据,无需同步、秒级响应。数据只存一份,省成本、提效率,权限统一管理,打破“又要快又要省”的不可能三角,助力企业实现分析自由。
203 49
|
22天前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
22天前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
2月前
|
存储 SQL 分布式计算
MaxCompute 聚簇优化推荐原理
基于历史查询智能推荐Clustered表,显著降低计算成本,提升数仓性能。
239 4
MaxCompute 聚簇优化推荐原理
|
1月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
2月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
2月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。

热门文章

最新文章