《大数据原理:复杂信息的准备、共享和分析》一一2.10 重标识

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本节书摘来自华章出版社《大数据原理:复杂信息的准备、共享和分析》一 书中的第2章,第2.10节,作者:[美] 朱尔斯 J. 伯曼(Jules J. Berman)著 ,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.10 重标识
对于科学家而言,去标识化有两个目的:
1.保护数据的保密性和个人隐私。
2.删除可能影响实验的信息。
保密性和隐私问题一直是以人为主题的数据需要面对的问题,而且分析数据时的实验误差总会存在,故而去标识化不可逆转势在必行。
科研诚信往往会与不可逆转的去标识化相冲突。有时多个实验样本数据会混在一起,有时会弄错样本数据源。而一旦样本数据出现差错,那么一些科学发现也许就不成立,需要被驳回37-41。除此之外,数据有时也会因为不合理的收集过程导致科研诚信受到质疑。举个例子,插反电极生成的心电图可能会带来虚假的、误导性的结果。上面这些是无意的科研不诚信,但有的时候,一些不诚实的科学家会故意捏造或破坏原始样本数据,以达到他个人的实验意图。无论何种原因造成的数据出错,收回已发表的论文很重要42,43。为了保证科研诚信,在某些情况下有必要对去标识化的数据重新进行标识。
在一些情况下,去标识化使得数据分析师无法帮助那些保密性已受到保护的个人。假设你正在利用收集来的去标识化数据进行分析,并发现病人的某种基因标记代表了一种疾病,如果早期进行治疗可以治愈;或者你发现了一种新的生物标记,可以决定哪些病人适合手术哪些不适合。这时,你不得不联系数据库里的病人,告知他们可以挽救他们生命的信息。然而,去标识化了的数据不会向你提供病人的身份信息,而且没人知道。
在严格控制的环境下,去标识化记录可以被重新标识。重标识通常是通过委托第三方来实现,第三方保有一份保密清单,这份清单将去标识化的记录与个人信息进行了一一对应。显然,只有在大数据资源保留了数据记录标识符与对应的去标识化记录标识符的连接关系,重标识才能够实现。为去标识化的记录分配公共名称需要在严格的监督下进行。数据管理人员必须建立一个协议,描述获准重标识的过程。重标识有可能导致保密性受到破坏,人类受到伤害,因此,如何管理重标识过程将是大数据管理人员最沉重的责任之一。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
23天前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
2月前
|
存储 SQL 分布式计算
终于!大数据分析不用再“又要快又要省钱”二选一了!Dataphin新功能太香了!
Dataphin推出查询加速新功能,支持用StarRocks等引擎直连MaxCompute或Hadoop查原始数据,无需同步、秒级响应。数据只存一份,省成本、提效率,权限统一管理,打破“又要快又要省”的不可能三角,助力企业实现分析自由。
203 49
|
22天前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
22天前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
2月前
|
存储 SQL 分布式计算
MaxCompute 聚簇优化推荐原理
基于历史查询智能推荐Clustered表,显著降低计算成本,提升数仓性能。
239 4
MaxCompute 聚簇优化推荐原理
|
1月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
2月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
2月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
170 14
|
4月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
145 4

热门文章

最新文章