《大数据原理:复杂信息的准备、共享和分析》一一2.9 数据清洗

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本节书摘来自华章出版社《大数据原理:复杂信息的准备、共享和分析》一 书中的第2章,第2.9节,作者:[美] 朱尔斯 J. 伯曼(Jules J. Berman)著 ,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.9 数据清洗
数据清洗有时候被看作去标识化的同义词,事实上,应该理解为一个起于去标识化过程结束时的过程。数据清洗会将那些数据记录里不希望保留的信息移除,包括个人信息和其他与数据记录含义不直接相关的信息。例如,在医院记录的案例里,数据清洗应当清洗掉病人的主治医生姓名、医院或医疗机构名称、地址、看病日期和其他不合适的、不合法的、不相关的或者存在潜在危险的信息。
关于医疗数据记录,有个说法,“‘最小化必要’分享数据”33(见术语表,Minimal necessary),是指在分享记录时,只需要分享最少量的必要信息,其他与数据分析师的应用目的不直接相关的信息均不分享。数据清洗过程给予数据管理人员一个断开数据记录自身信息之间的联结关系和舍弃数据分析师不需要的信息的机会。
数据清洗的方法很多,大部分都要求数据管理人员制作出一个不应该包含在分享记录中的异常列表,如城市、州、邮编、人名等。清洗应用程序遍历数据记录,提取不必要信息。清洗的结果是获得“干净”的数据,而不是消除它。但这类方法并不能生成完美清洗的数据集。在大数据资源里,数据管理人员基本上不可能提前获知每个不想要的数据条目,并把它添加到异常列表中。没有人这么聪明。
然而,有一个方法可以实现准确无误地清洗数据。首先,创建一个可包含在清洗后的、去标识化后的数据集中的数据列表(通常是单词和短语的形式);接着,删除不在此列表中的其他数据,剩下的就是清洗后的数据。这种方法是一种逆向清洗方法,数据集中的任何数据都将被删除,除非它是被允许存在的“异常”。
上面的这种方法运算速度很快,可生产无错误的、去标识化的、清洗过的数据输出19,35,36。下面给出一个实例:

逆向清洗方法首先要有一个允许的词条列表。生成这个列表的一个简单方法是在术语表中筛选出那些专业词汇,例如,一个生物物种综合清单不会有日期、邮编等信息。我曾经发表的一个算法,实现了从标准术语表中自动收集双词短语,并形成一个允许的成对词列表,短语数量大约为20万19。算法的处理速度很快,而且不会因为列表变大而降低速度。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
23天前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
2月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
2月前
|
存储 SQL 分布式计算
终于!大数据分析不用再“又要快又要省钱”二选一了!Dataphin新功能太香了!
Dataphin推出查询加速新功能,支持用StarRocks等引擎直连MaxCompute或Hadoop查原始数据,无需同步、秒级响应。数据只存一份,省成本、提效率,权限统一管理,打破“又要快又要省”的不可能三角,助力企业实现分析自由。
203 49
|
22天前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
22天前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
2月前
|
存储 SQL 分布式计算
MaxCompute 聚簇优化推荐原理
基于历史查询智能推荐Clustered表,显著降低计算成本,提升数仓性能。
239 4
MaxCompute 聚簇优化推荐原理
|
1月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
2月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
2月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。

热门文章

最新文章