《机器人编程实战》一一2.2 确定动作

简介: 本节书摘来自华章出版社《机器人编程实战》一 书中的第2章,第2.2节,作者:[美]卡梅伦·休斯(Cameron Hughes) 特雷西·休斯(Tracey Hughes)著 ,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.2 确定动作
提出机器人词汇的初始步骤之一是创建能力矩阵,然后基于该矩阵确定机器人可以执行的各种动作。例如,在表2-1示例中,可能列出的动作为:
扫描
举起
捡起
前进
停止
连接
断开
放下
降落
向前移动
向后移动
最后,通过扫描、传送、连接等,我们必须告知机器人我们的意图。我们认为Unit2有潜能能够扫描一罐蓝色的油。“蓝色罐装油”在何处符合我们的基本词汇?
虽然表2-1说明我们的机器人有颜色传感器,但是能力矩阵里没有任何关于罐装油的东西,这就将我们带入本书的另一个重点:
一半的机器人词汇是关于机器人的情况或能力。
机器人词汇的另一半是关于期望机器人运行的场景或态势。
这些都是编程一个有用自主机器人必不可少的重要概念,本书的剩余部分都在阐述这两个重要观点。

相关文章
|
1月前
|
数据采集 人工智能 算法
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
Seer是由上海AI实验室与北大等机构联合推出的端到端操作模型,结合视觉预测与动作执行,显著提升机器人任务成功率。
72 20
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
|
1月前
|
数据采集 传感器 人工智能
AgiBot World:智元机器人开源百万真机数据集,数据集涵盖了日常生活所需的绝大多数动作
AgiBot World 是智元机器人开源的百万真机数据集,旨在推动具身智能的发展,覆盖家居、餐饮、工业等五大核心场景。
126 9
AgiBot World:智元机器人开源百万真机数据集,数据集涵盖了日常生活所需的绝大多数动作
|
2月前
|
人工智能 算法 机器人
EMMA-X:新加坡科技设计大学推出具身多模态动作模型,使夹爪机器人具备空间推理和任务规划能力
EMMA-X是由新加坡科技设计大学推出的具身多模态动作模型,具备70亿参数,通过在链式思维推理数据上微调OpenVLA创建。该模型结合层次化的具身数据集,增强空间推理和任务规划能力。
121 3
EMMA-X:新加坡科技设计大学推出具身多模态动作模型,使夹爪机器人具备空间推理和任务规划能力
|
6月前
|
自然语言处理 机器人 API
Instruct2Act:使用大型语言模型将多模态指令映射到机器人动作
Instruct2Act是一个框架,它结合了大型语言模型和多模态基础模型,将自然语言和视觉指令转换为机器人的顺序动作,实现精确的感知、规划和行动,展示了强大的零样本性能和灵活性。
102 0
Instruct2Act:使用大型语言模型将多模态指令映射到机器人动作
|
9月前
|
机器学习/深度学习 人工智能 机器人
[译][AI 机器人] Atlas的电动新时代,不再局限于人类运动范围的动作方式
波士顿动力宣布液压Atlas机器人退役,推出全新电动Atlas,旨在实现更广泛的实际应用。这款全电动机器人将拓展人类运动范围,解决复杂工业挑战。现代汽车公司将参与其商业化进程,作为测试应用场景。波士顿动力计划与创新客户合作,逐步迭代Atlas的应用,打造高效、实用的移动机器人解决方案。Atlas将结合强化学习和计算机视觉等先进技术,通过Orbit软件平台进行管理,未来将在真实世界中发挥超越人类能力的作用。
|
9月前
|
传感器 机器人 C++
ROS 2机器人编程实战:基于现代C++和Python 3实现简单机器人项目
ROS 2机器人编程实战:基于现代C++和Python 3实现简单机器人项目
775 0
|
9月前
|
算法 机器人 Python
动态规划法在扫地机器人中的实战应用(基于动作值函数的策略迭代 python 附源码)
动态规划法在扫地机器人中的实战应用(基于动作值函数的策略迭代 python 附源码)
112 0
|
9月前
|
机器学习/深度学习 算法 Python
动态规划法和策略迭代在扫地机器人中确定状态值和动作值函数的策略评估(python实现 附源码 超详细)
动态规划法和策略迭代在扫地机器人中确定状态值和动作值函数的策略评估(python实现 附源码 超详细)
94 0
|
机器学习/深度学习 自然语言处理 算法
谷歌让机器人充当大语言模型的手和眼,一个任务拆解成16个动作一气呵成
谷歌让机器人充当大语言模型的手和眼,一个任务拆解成16个动作一气呵成
295 0
|
机器学习/深度学习 传感器 人工智能
谷歌 AI 提出双重策略强化学习框架,帮助机器人安全学习动作技能
深度强化学习在自主解决复杂、高维问题方面的前景,引起了机器人、游戏和自动驾驶汽车等领域的极大兴趣。但是,要想有效地进行强化学习策略的训练,需要对大量的机器人状态和行为进行研究。这其中存在一定的安全风险,比如,在训练一个有腿机器人时,由于这类机器人自身不稳定,机器人在学习时很容易发生跌倒,这可能会造成机器人的损害。
344 0
谷歌 AI 提出双重策略强化学习框架,帮助机器人安全学习动作技能

热门文章

最新文章