《机器人自动化:建模、仿真与控制》一一导读

简介:

前言

Automation for Robotics
Ⅰ.1状态表达式
与我们紧密相关的生物、经济和机械系统通常都可以用如下微分方程来描述:
image

假设该系统的时间t是连续的[JAU 05], u(t)是系统的输入(或控制)向量,y(t)是以一定精度检测出的系统输出向量。向量x(t)称为系统的状态,它表示系统的记忆,或者说当系统输入为u(t)时预测系统结果所需的信息。方程组中的第一个方程称为演化方程,该方程是一个微分方程,它给出了t时刻的状态向量x(t)的当前值和施加的控制向量u(t)。第二个方程称为观测方程,它用来计算t时刻在已知状态和控制时的输出向量y(t)。注意,观测方程不同于演化方程,由于它不包含导数项,因此它不是微分方程。这两个方程构成了系统的状态表达式。
有时我们用离散时间k来描述上面的状态方程,这里k∈Z,Z是整数集,例如计算机就是一个离散时间系统,它的离散时间k与微处理器的时钟同步。离散时间系统通常用下述递归方程描述:
image

本书的第一个目的是通过多做习题来了解状态表达的概念。为此,我们在第1章安排了各种各样的习题来揭示如何得到状态表达式,第2章对这些已知系统的状态表达式进行计算机仿真。
本书的第二个目的是提出由状态方程描述的系统的控制方法。换句话说,我们试图构建自动机械系统(人除了给出命令或设定点外,并不包含在系统中),控制器能够使系统按人的意愿进行控制(按人的需要对系统的行为进行改变)。为此,控制器将根据输出y(t)(或多或少有噪声)和设定点w(t)计算系统的输入u(t)(见图Ⅰ1)。
image

目录

第1章 Automation for Robotics 建模
1.1线性系统
1.2机械系统
1.3伺服电动机
第2章 Automation for Robotics 仿真
2.1向量场的概念
2.2图形表示
2.3仿真
2.4习题

相关文章
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
339 85
基于Qlearning强化学习的机器人路线规划matlab仿真
本内容展示了基于Q-learning强化学习算法的路径规划研究,包括MATLAB仿真效果、理论知识及核心代码。通过训练与测试,智能体在离散化网格环境中学习最优策略以规避障碍并到达目标。代码实现中采用epsilon-贪婪策略平衡探索与利用,并针对紧急情况设计特殊动作逻辑(如后退)。最终,Q-table收敛后可生成从起点到终点的最优路径,为机器人导航提供有效解决方案。
118 20
基于模糊PID控制器的puma560机器人控制系统的simulink建模与仿真
本课题研究基于模糊PID控制器的PUMA 560机器人控制系统建模与仿真,对比传统PID控制器性能。通过Simulink实现系统建模,分析两种控制器的误差表现。模糊PID结合了PID的线性控制优势与模糊逻辑的灵活性,提升动态性能和抗干扰能力。以PUMA 560机器人为例,其运动学和动力学模型为基础,设计针对各关节的模糊PID控制器,包括模糊化、规则制定、推理及去模糊化等步骤,最终实现更优的控制效果。
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
199 68
基于PID控制器的六自由度串联机器人控制系统的simulink建模与仿真
本课题基于MATLAB2022a的Simulink环境,对六自由度串联机器人控制系统进行建模与仿真,采用PID控制器实现关节的位置、速度或力矩控制。PID控制器通过比例、积分、微分三种策略有效减小系统误差,提高响应速度和稳定性。仿真结果显示系统运行良好,无水印。尽管PID控制简单实用,但在复杂动力学环境下,常结合其他控制策略以增强鲁棒性。
四自由度SCARA机器人的运动学和动力学matlab建模与仿真
本课题深入研究SCARA机器人系统,提出其动力学与运动学模型,并基于MATLAB Robotics Toolbox建立四自由度SCARA机器人仿真对象。通过理论结合仿真实验,实现了运动学正解、逆解及轨迹规划等功能,完成系统实验和算法验证。SCARA机器人以其平面关节结构实现快速定位与装配,在自动生产线中广泛应用,尤其在电子和汽车行业表现优异。使用D-H参数法进行结构建模,推导末端执行器的位姿,建立了机器人的运动学方程。
智能机器人在工业自动化中的应用与前景###
本文探讨了智能机器人在工业自动化领域的最新应用,包括其在制造业中的集成、操作灵活性和成本效益等方面的优势。通过分析当前技术趋势和案例研究,预测了智能机器人未来的发展方向及其对工业生产模式的潜在影响。 ###
405 9
基于模糊神经网络的移动机器人路径规划matlab仿真
该程序利用模糊神经网络实现移动机器人的路径规划,能在含5至7个静态未知障碍物的环境中随机导航。机器人配备传感器检测前方及其两侧45度方向上的障碍物距离,并根据这些数据调整其速度和方向。MATLAB2022a版本下,通过模糊逻辑处理传感器信息,生成合理的路径,确保机器人安全到达目标位置。以下是该程序在MATLAB2022a下的测试结果展示。
基于QLearning强化学习的机器人避障和路径规划matlab仿真
本文介绍了使用MATLAB 2022a进行强化学习算法仿真的效果,并详细阐述了Q-Learning原理及其在机器人避障和路径规划中的应用。通过Q-Learning算法,机器人能在未知环境中学习到达目标的最短路径并避开障碍物。仿真结果展示了算法的有效性,核心程序实现了Q表的更新和状态的可视化。未来研究可扩展至更复杂环境和高效算法。![](https://ucc.alicdn.com/pic/developer-ecology/nymobwrkkdwks_d3b95a2f4fd2492381e1742e5658c0bc.gif)等图像展示了具体仿真过程。
311 0
实例8:机器人的空间描述和变换仿真
本文是关于机器人空间描述和变换的仿真实验教程,通过Python编程和可视化学习,介绍了刚体的平动和转动、位姿描述、坐标变换等基础知识,并提供了具体的实验步骤和代码实现。实验目的是让读者通过编程实践,了解和掌握空间变换的数学原理和操作方法。
119 2
实例8:机器人的空间描述和变换仿真

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等