1M 上下文不是免费午餐:超过 200K 输入价格翻倍,怎么算账怎么控

简介: Opus 4.6 首次为旗舰模型开放1M上下文,但输入超200K token即触发全请求价格翻倍(输入$10→$5/MTok,输出$37.5→$25/MTok)。需精准监控总输入token(含cache相关),善用RAG、裁剪、缓存与Batch API控本。

Opus 4.6 第一次给 Opus 级别的模型开了 1M token 的上下文窗口。以前只有 Sonnet 有这个能力,现在旗舰模型也能塞进去一整个中型项目的代码了。

但这个 1M 窗口有个不那么显眼的价格条件:输入超过 200K token 后,整个请求的价格翻倍。不是超出部分翻倍,是整个请求的所有 token 都按高价计费。

很多人看到"1M context"就兴奋,没细看价格表。上线后发现账单不对劲——这篇就把这个账算清楚。

价格结构

输入 token 数 输入价格 输出价格
≤ 200K $5/MTok $25/MTok
> 200K $10/MTok $37.50/MTok

关键细节:200K 的阈值只看输入 token,包括 input_tokens + cache_creation_input_tokens + cache_read_input_tokens。输出 token 数不影响是否触发溢价,但一旦触发,输出价格也跟着涨。

举个例子。你发了一个请求,输入 250K token,输出 2K token。

正常价格(如果没超 200K):250K × $5 + 2K × $25 = $1.25 + $0.05 = $1.30
实际价格(超了 200K):250K × $10 + 2K × $37.50 = $2.50 + $0.075 = $2.575

差了一倍。

再看一个更极端的场景:输入 199K 和 201K 的差异。

199K 输入 + 2K 输出:$0.995 + $0.05 = $1.045
201K 输入 + 2K 输出:$2.01 + $0.075 = $2.085

多了 2K 个 token(大概多了 4-5 段文本),成本翻了一倍。这个阶梯效应非常陡。

怎么判断是否被收了溢价

API 响应的 usage 字段里有三个数字:

{
   
  "usage": {
   
    "input_tokens": 210000,
    "cache_creation_input_tokens": 0,
    "cache_read_input_tokens": 0,
    "output_tokens": 1500
  }
}

三者加起来超过 200,000,就是按溢价计费了。

建议在调用层加一个检查:

def check_long_context_pricing(usage):
    total_input = (
        usage.input_tokens 
        + usage.cache_creation_input_tokens 
        + usage.cache_read_input_tokens
    )
    if total_input > 200_000:
        print(f"警告:长上下文溢价已触发,总输入 {total_input} tokens")
    return total_input > 200_000

什么时候该用 1M,什么时候不该

该用的场景

你需要让模型一次性看到大量相关内容,而且这些内容之间有关联,拆开喂会丢失信息。比如审查一整个微服务的代码(通常 100K-300K token)、分析一份 200 页的合同、或者在一个大型日志文件里找异常。

Anthropic 在 MRCR v2 测试里展示了一个数据:Opus 4.6 在 1M 的 8 针"大海捞针"测试里拿了 76%,Sonnet 4.5 只有 18.5%。也就是说 Opus 4.6 不只是"能装下",还"真的能用"——在超长上下文里保持注意力的能力强了好几倍。

不该用的场景

你可以把内容拆开处理,或者通过 RAG 检索只喂相关片段。绝大多数场景不需要一口气塞 200K+ token 进去。

一个常见的反模式:把整个代码仓库塞进上下文"以防万一"。这不仅贵,还会稀释模型对关键信息的注意力。先用 RAG 或文件树筛选,只送相关文件进去,效果通常更好。

控制策略

1. 请求前预检

发请求之前先算一下 token 数(用 Anthropic 的 Token Counting API)。超过阈值就决定:要不要拆、要不要削。

count = client.messages.count_tokens(
    model="claude-opus-4-6",
    messages=messages
)

if count.input_tokens > 180_000:  # 留 20K 余量
    messages = trim_context(messages)  # 你自己的裁剪逻辑

2. 阈值附近的优化空间

如果你的输入经常在 180K-220K 之间浮动,优化的收益最大。砍掉 20K token,可能省一半的钱。

优先砍的内容:

  • 对话历史中的旧轮次(尤其是简单的确认和重复)
  • 工具调用的中间结果(保留最终结果就行)
  • 重复出现的上下文信息

3. 跟 Prompt Caching 叠加

长上下文溢价和 Prompt Caching 是独立计算的。超过 200K 后,缓存写入和缓存命中的价格也跟着涨:

项目 ≤ 200K > 200K
缓存写入(5分钟) $6.25/MTok $12.50/MTok
缓存命中 $0.50/MTok $1.00/MTok

即使缓存命中的单价也翻倍了,但相对于未缓存的 $10/MTok 来说,$1.00/MTok 还是划算得多。如果你一定要用长上下文,缓存是必开的。

4. 考虑 Batch API

Batch API 的 50% 折扣同样适用于长上下文场景。如果你的任务不需要实时返回(比如批量文档分析),用 Batch 可以把 $10/MTok 降到 $5/MTok——刚好跟标准价一样。

1M beta 的准入条件

1M 上下文目前是 beta 功能,只对 Usage Tier 4 和自定义费率的组织开放。你不是想用就能用的。

如果你在 Tier 1-3,请求超过 200K token 会直接报错,不是按溢价计费。要么升级 Tier,要么控制输入长度在 200K 以内。

一个决策树

你的输入 token 数是多少?
├── < 150K → 正常用,不用想太多
├── 150K - 200K → 有优化空间,能砍就砍
├── 200K - 300K → 问自己:能用 RAG 替代吗?
│   ├── 能 → 用 RAG,控制在 200K 以内
│   └── 不能 → 上 1M,开缓存,考虑 Batch
└── > 300K → 确认你真的需要模型一次性看到所有内容
    ├── 是 → 上 1M + 缓存 + Batch + 预算监控
    └── 不是 → 拆成多次请求

200K 是个硬坎。多一个 token 都翻倍。在这个坎附近做好控制,能省的钱比你想象中多。

目录
相关文章
|
10天前
|
人工智能 自然语言处理 Shell
🦞 如何在 OpenClaw (Clawdbot/Moltbot) 配置阿里云百炼 API
本教程指导用户在开源AI助手Clawdbot中集成阿里云百炼API,涵盖安装Clawdbot、获取百炼API Key、配置环境变量与模型参数、验证调用等完整流程,支持Qwen3-max thinking (Qwen3-Max-2026-01-23)/Qwen - Plus等主流模型,助力本地化智能自动化。
🦞 如何在 OpenClaw (Clawdbot/Moltbot) 配置阿里云百炼 API
|
6天前
|
人工智能 机器人 Linux
保姆级 OpenClaw (原 Clawdbot)飞书对接教程 手把手教你搭建 AI 助手
OpenClaw(原Clawdbot)是一款开源本地AI智能体,支持飞书等多平台对接。本教程手把手教你Linux下部署,实现数据私有、系统控制、网页浏览与代码编写,全程保姆级操作,240字内搞定专属AI助手搭建!
4424 13
保姆级 OpenClaw (原 Clawdbot)飞书对接教程 手把手教你搭建 AI 助手
|
5天前
|
人工智能 安全 机器人
OpenClaw(原 Clawdbot)钉钉对接保姆级教程 手把手教你打造自己的 AI 助手
OpenClaw(原Clawdbot)是一款开源本地AI助手,支持钉钉、飞书等多平台接入。本教程手把手指导Linux下部署与钉钉机器人对接,涵盖环境配置、模型选择(如Qwen)、权限设置及调试,助你快速打造私有、安全、高权限的专属AI助理。(239字)
3755 10
OpenClaw(原 Clawdbot)钉钉对接保姆级教程 手把手教你打造自己的 AI 助手
|
8天前
|
人工智能 JavaScript 应用服务中间件
零门槛部署本地AI助手:Windows系统Moltbot(Clawdbot)保姆级教程
Moltbot(原Clawdbot)是一款功能全面的智能体AI助手,不仅能通过聊天互动响应需求,还具备“动手”和“跑腿”能力——“手”可读写本地文件、执行代码、操控命令行,“脚”能联网搜索、访问网页并分析内容,“大脑”则可接入Qwen、OpenAI等云端API,或利用本地GPU运行模型。本教程专为Windows系统用户打造,从环境搭建到问题排查,详细拆解全流程,即使无技术基础也能顺利部署本地AI助理。
7008 15
|
6天前
|
存储 人工智能 机器人
OpenClaw是什么?阿里云OpenClaw(原Clawdbot/Moltbot)一键部署官方教程参考
OpenClaw是什么?OpenClaw(原Clawdbot/Moltbot)是一款实用的个人AI助理,能够24小时响应指令并执行任务,如处理文件、查询信息、自动化协同等。阿里云推出的OpenClaw一键部署方案,简化了复杂配置流程,用户无需专业技术储备,即可快速在轻量应用服务器上启用该服务,打造专属AI助理。本文将详细拆解部署全流程、进阶功能配置及常见问题解决方案,确保不改变原意且无营销表述。
4575 4
|
4天前
|
人工智能 机器人 Linux
OpenClaw(Clawdbot、Moltbot)汉化版部署教程指南(零门槛)
OpenClaw作为2026年GitHub上增长最快的开源项目之一,一周内Stars从7800飙升至12万+,其核心优势在于打破传统聊天机器人的局限,能真正执行读写文件、运行脚本、浏览器自动化等实操任务。但原版全英文界面对中文用户存在上手门槛,汉化版通过覆盖命令行(CLI)与网页控制台(Dashboard)核心模块,解决了语言障碍,同时保持与官方版本的实时同步,确保新功能最快1小时内可用。本文将详细拆解汉化版OpenClaw的搭建流程,涵盖本地安装、Docker部署、服务器远程访问等场景,同时提供环境适配、问题排查与国内应用集成方案,助力中文用户高效搭建专属AI助手。
2543 5
|
8天前
|
人工智能 JavaScript API
零门槛部署本地 AI 助手:Clawdbot/Meltbot 部署深度保姆级教程
Clawdbot(Moltbot)是一款智能体AI助手,具备“手”(读写文件、执行代码)、“脚”(联网搜索、分析网页)和“脑”(接入Qwen/OpenAI等API或本地GPU模型)。本指南详解Windows下从Node.js环境搭建、一键安装到Token配置的全流程,助你快速部署本地AI助理。(239字)
4623 23
|
14天前
|
人工智能 API 开发者
Claude Code 国内保姆级使用指南:实测 GLM-4.7 与 Claude Opus 4.5 全方案解
Claude Code是Anthropic推出的编程AI代理工具。2026年国内开发者可通过配置`ANTHROPIC_BASE_URL`实现本地化接入:①极速平替——用Qwen Code v0.5.0或GLM-4.7,毫秒响应,适合日常编码;②满血原版——经灵芽API中转调用Claude Opus 4.5,胜任复杂架构与深度推理。
8566 13