✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
👇 关注我领取海量matlab电子书和数学建模资料
🍊个人信条:格物致知,完整Matlab代码获取及仿真咨询内容私信。
🔥 内容介绍
摘要:机组组合(UC)问题是电力系统优化运行的核心问题之一,其本质是在满足负荷平衡、系统备用、输电线路传输容量等约束条件下,优化发电机组的启停计划和发电出力分配,以实现发电成本最小化。传统数学优化方法在处理大规模、高维、非线性的UC问题时存在计算复杂度高、收敛性差等局限性。矩阵实编码遗传算法(MRCGA)作为一种智能优化算法,凭借其全局搜索能力、编码方式灵活性和对复杂约束的适应性,在UC问题求解中展现出显著优势。本文系统梳理了MRCGA求解UC问题的研究进展,从算法原理、编码设计、约束处理、求解效率及工程应用等方面进行综合分析,总结了现有研究的贡献与不足,并展望了未来研究方向。
关键词:机组组合问题;矩阵实编码遗传算法;智能优化;电力系统;发电成本
- 引言
随着电力系统规模的不断扩大和可再生能源的快速发展,机组组合(Unit Commitment, UC)问题的复杂性显著增加。传统数学优化方法(如动态规划、拉格朗日松弛法、混合整数线性规划等)在处理大规模、高维、非线性的UC问题时,往往面临计算效率低、收敛性差、难以处理复杂约束等问题。智能优化算法(如遗传算法、粒子群优化、模拟退火等)因其全局搜索能力和对复杂问题的适应性,逐渐成为UC问题求解的主流方法之一。
矩阵实编码遗传算法(Matrix Real-Coded Genetic Algorithm, MRCGA)是遗传算法的一种改进形式,其核心思想是将机组启停计划和发电出力分配直接编码为矩阵形式,通过矩阵运算实现遗传操作(选择、交叉、变异),从而避免传统编码方式(如二进制编码、实数编码)在处理高维问题时的维度灾难和计算复杂度问题。MRCGA在UC问题求解中展现出显著优势,已成为该领域的研究热点。
本文系统梳理了MRCGA求解UC问题的研究进展,从算法原理、编码设计、约束处理、求解效率及工程应用等方面进行综合分析,总结了现有研究的贡献与不足,并展望了未来研究方向。
- MRCGA的基本原理与编码设计
2.1 MRCGA的基本原理
MRCGA是遗传算法的一种改进形式,其核心思想是将机组启停计划和发电出力分配直接编码为矩阵形式,通过矩阵运算实现遗传操作。与传统遗传算法相比,MRCGA具有以下特点:
编码方式灵活:采用矩阵编码,可直接表示机组启停状态和发电出力,避免传统编码方式(如二进制编码、实数编码)在处理高维问题时的维度灾难。
遗传操作高效:通过矩阵运算实现选择、交叉、变异等操作,显著提高计算效率。
约束处理方便:矩阵编码可自然嵌入负荷平衡、系统备用、输电线路传输容量等约束条件,便于约束处理。
⛳️ 运行结果
📣 部分代码
% Grey Wolf Optimizer (GWO) for Unit Commitment Problem
% Adapted from MRCGA implementation
clear; clc;
%% Problem Parameters (10-unit system)
N = 10; % Number of units
T = 24; % Time horizon (hours)
% Unit data [Pmax, Pmin, a, b, c, Ton, Toff, HSC, CSC, CST, InitHour]
unitData = [
455, 150, 1000, 16.19, 0.00048, 8, 8, 4500, 9000, 5, 8;
455, 150, 970, 17.26, 0.00031, 8, 8, 5000, 10000, 5, 8;
130, 20, 700, 16.6, 0.002, 5, 5, 550, 1100, 4, -5;
130, 20, 680, 16.5, 0.00211, 5, 5, 560, 1120, 4, -5;
162, 25, 450, 19.7, 0.00398, 6, 6, 900, 1800, 4, -6;
80, 20, 370, 22.26, 0.00712, 3, 3, 170, 340, 2, -3;
85, 25, 480, 27.74, 0.00079, 3, 3, 260, 520, 2, -3;
55, 10, 660, 25.92, 0.00413, 1, 1, 30, 60, 0, -1;
55, 10, 665, 27.27, 0.00222, 1, 1, 30, 60, 0, -1;
55, 10, 670, 27.79, 0.00173, 1, 1, 30, 60, 0, -1
];
% Load demand for 24 hours (MW)
demand = [700, 750, 850, 950, 1000, 1100, 1150, 1200, 1300, 1400, ...
1450, 1500, 1400, 1300, 1200, 1050, 1000, 1100, 1200, 1400, ...
1300, 1100, 900, 800];
% Reserve requirement (10% of demand)
reserve = 0.1 * demand;
%% GWO Parameters
params.popSize = 50; % Number of wolves
params.maxIter = 50 * N; % Maximum iterations
params.lambda = 0.6;
params.A = 1e6; % Large constant for fitness
params.delta = 2; % Penalty multiplier
%% Run GWO
fprintf('Starting Grey Wolf Optimizer for Unit Commitment...\n');
fprintf('Population Size: %d\n', params.popSize);
fprintf('Maximum Iterations: %d\n\n', params.maxIter);
[bestSchedule, bestCost, convergence] = GWO(unitData, demand, reserve, params);
%% Display Results
[fuelCost, startupCost, totalCost] = calculateDetailedCost(bestSchedule, unitData);
fprintf('========================================\n');
fprintf(' COST BREAKDOWN \n');
fprintf('========================================\n');
fprintf('Fuel Cost: $%12.2f\n', fuelCost);
fprintf('Startup Cost: $%12.2f\n', startupCost);
fprintf('----------------------------------------\n');
fprintf('Total Cost: $%12.2f\n', totalCost);
fprintf('========================================\n\n');
fprintf('Best Generation Schedule:\n');
displaySchedule(bestSchedule, unitData);
% Display startup pattern
fprintf('\n\nUnit Startup Pattern:\n');
displayStartupPattern(bestSchedule, unitData);
% Plot convergence
figure;
plot(convergence, 'LineWidth', 2);
xlabel('Iteration');
ylabel('Best Cost ($)');
title('Grey Wolf Optimizer Convergence Curve');
grid on;
%% Main GWO Function
function [bestSchedule, bestCost, convergence] = GWO(unitData, demand, reserve, params)
N = size(unitData, 1);
T = length(demand);
% Initialize wolf population
wolves = initializePopulation(params.popSize, N, T, demand, unitData);
% Evaluate initial population
fitness = zeros(params.popSize, 1);
for i = 1:params.popSize
fitness(i) = evaluateFitness(wolves{i}, unitData, demand, reserve, params);
end
% Identify alpha, beta, and delta wolves (best three solutions)
[sortedFitness, sortIdx] = sort(fitness, 'descend');
alphaSchedule = wolves{sortIdx(1)};
alphaFitness = sortedFitness(1);
betaSchedule = wolves{sortIdx(2)};
betaFitness = sortedFitness(2);
deltaSchedule = wolves{sortIdx(3)};
deltaFitness = sortedFitness(3);
convergence = zeros(params.maxIter, 1);
bestCost = params.A / alphaFitness;
% Main iteration loop
for iter = 1:params.maxIter
a = 2 - iter * (2 / params.maxIter); % Linearly decreased from 2 to 0
% Update position of each wolf
for i = 1:params.popSize
for t = 1:T
% Update position with respect to alpha
r1 = rand(N, 1);
r2 = rand(N, 1);
A1 = 2 * a * r1 - a;
C1 = 2 * r2;
D_alpha = abs(C1 .* alphaSchedule(:, t) - wolves{i}(:, t));
X1 = alphaSchedule(:, t) - A1 .* D_alpha;
% Update position with respect to beta
r1 = rand(N, 1);
r2 = rand(N, 1);
A2 = 2 * a * r1 - a;
C2 = 2 * r2;
D_beta = abs(C2 .* betaSchedule(:, t) - wolves{i}(:, t));
X2 = betaSchedule(:, t) - A2 .* D_beta;
% Update position with respect to delta
r1 = rand(N, 1);
r2 = rand(N, 1);
A3 = 2 * a * r1 - a;
C3 = 2 * r2;
D_delta = abs(C3 .* deltaSchedule(:, t) - wolves{i}(:, t));
X3 = deltaSchedule(:, t) - A3 .* D_delta;
% Update wolf position (average of three positions)
wolves{i}(:, t) = (X1 + X2 + X3) / 3;
end
% Repair and ensure feasibility
wolves{i} = repairSchedule(wolves{i}, unitData, demand, reserve);
% Evaluate new fitness
fitness(i) = evaluateFitness(wolves{i}, unitData, demand, reserve, params);
end
% Update alpha, beta, and delta
[sortedFitness, sortIdx] = sort(fitness, 'descend');
if sortedFitness(1) > alphaFitness
alphaSchedule = wolves{sortIdx(1)};
alphaFitness = sortedFitness(1);
end
if sortedFitness(2) > betaFitness
betaSchedule = wolves{sortIdx(2)};
betaFitness = sortedFitness(2);
end
if sortedFitness(3) > deltaFitness
deltaSchedule = wolves{sortIdx(3)};
deltaFitness = sortedFitness(3);
end
bestCost = params.A / alphaFitness;
convergence(iter) = bestCost;
% Display progress
if mod(iter, 50) == 0
fprintf('Iteration %d: Best Cost = $%.2f\n', iter, bestCost);
end
end
bestSchedule = alphaSchedule;
end
%% Initialize Population
function population = initializePopulation(popSize, N, T, demand, unitData)
population = cell(popSize, 1);
for p = 1:popSize
G = zeros(N, T);
for t = 1:T
% Generate random positive numbers
RAND = rand(N, 1) + 0.1; % Ensure all positive
PER = RAND / sum(RAND);
Vt = PER * demand(t);
% Ensure minimum generation for committed units
for i = 1:N
if Vt(i) > unitData(i, 2) * 0.5
Vt(i) = max(Vt(i), unitData(i, 2));
end
end
G(:, t) = Vt;
end
% Repair mechanism
G = repairSchedule(G, unitData, demand, zeros(1, T));
population{p} = G;
end
end
%% Repair Schedule
function G = repairSchedule(G, unitData, demand, reserve)
[N, T] = size(G);
for t = 1:T
% Generation limits and unit status
for i = 1:N
Pmax = unitData(i, 1);
Pmin = unitData(i, 2);
lambda = 0.6;
if G(i, t) > Pmax
G(i, t) = Pmax;
elseif G(i, t) >= Pmin
% Keep as is
elseif G(i, t) > lambda * Pmin
G(i, t) = Pmin;
else
G(i, t) = 0;
end
end
% Ramp rate constraints (if not first hour)
if t > 1
for i = 1:N
Pmax = unitData(i, 1);
Pmin = unitData(i, 2);
% Using large ramp rates to allow flexibility
UR = Pmax;
DR = Pmax;
if G(i, t-1) > 0
Pimax = min(Pmax, G(i, t-1) + UR);
Pimin = max(0, G(i, t-1) - DR);
else
Pimax = Pmax;
Pimin = 0;
end
if G(i, t) > Pimax
G(i, t) = Pimax;
elseif G(i, t) < Pimin && G(i, t) > 0
if Pimin <= Pmin
G(i, t) = Pmin;
else
G(i, t) = Pimin;
end
end
end
end
% Check spinning reserve and start units if needed
onUnits = find(G(:, t) > 0);
maxCapacity = sum(unitData(onUnits, 1));
if maxCapacity < demand(t) + reserve(t)
% Need to start more units
offUnits = find(G(:, t) == 0);
for i = 1:length(offUnits)
idx = offUnits(i);
G(idx, t) = unitData(idx, 2); % Set to Pmin
maxCapacity = maxCapacity + unitData(idx, 1);
if maxCapacity >= demand(t) + reserve(t)
break;
end
end
end
% Load balance - must satisfy demand exactly
G(:, t) = balanceLoad(G(:, t), demand(t), unitData);
% Round to 1 decimal place after all adjustments
G(:, t) = round(G(:, t), 1);
end
end
%% Balance Load
function Vt = balanceLoad(Vt, Dt, unitData)
N = length(Vt);
maxIter = 100;
tolerance = 1.0;
for iter = 1:maxIter
totalGen = sum(Vt);
deficit = Dt - totalGen;
if abs(deficit) < tolerance
break;
end
Son = find(Vt > 0);
if isempty(Son)
% No units on, start cheapest units
[~, sortIdx] = sort(unitData(:, 4)); % Sort by b coefficient
for i = 1:min(3, N)
idx = sortIdx(i);
Vt(idx) = unitData(idx, 2); % Pmin
end
continue;
end
% Find units that can increase generation
S1 = [];
for i = 1:length(Son)
idx = Son(i);
Pmax = unitData(idx, 1);
if Vt(idx) < Pmax - 0.1
S1 = [S1, idx];
end
end
% Find units that can decrease generation
S2 = [];
for i = 1:length(Son)
idx = Son(i);
Pmin = unitData(idx, 2);
if Vt(idx) > Pmin + 0.1
S2 = [S2, idx];
end
end
if deficit > tolerance && ~isempty(S1)
% Need more generation - distribute among units that can increase
share = deficit / length(S1);
for i = 1:length(S1)
idx = S1(i);
Pmax = unitData(idx, 1);
available = Pmax - Vt(idx);
increase = min(available, share);
Vt(idx) = Vt(idx) + increase;
end
elseif deficit > tolerance
% Need to start more units
Soff = find(Vt == 0);
if ~isempty(Soff)
% Start cheapest available unit
costs = unitData(Soff, 4);
[~, minIdx] = min(costs);
idx = Soff(minIdx);
Vt(idx) = unitData(idx, 2);
end
elseif deficit < -tolerance && ~isempty(S2)
% Need less generation - distribute among units that can decrease
excess = abs(deficit);
share = excess / length(S2);
for i = 1:length(S2)
idx = S2(i);
Pmin = unitData(idx, 2);
available = Vt(idx) - Pmin;
decrease = min(available, share);
Vt(idx) = Vt(idx) - decrease;
end
end
end
% Final adjustment - distribute any remaining imbalance proportionally
totalGen = sum(Vt);
deficit = Dt - totalGen;
if abs(deficit) > 0.1
Son = find(Vt > 0);
if ~isempty(Son)
for idx = Son'
ratio = Vt(idx) / totalGen;
Vt(idx) = Vt(idx) + deficit * ratio;
% Ensure within limits
Vt(idx) = max(unitData(idx, 2), min(unitData(idx, 1), Vt(idx)));
end
end
end
end
%% Evaluate Fitness
function fit = evaluateFitness(G, unitData, demand, reserve, params)
[fuelCost, startupCost, ~] = calculateDetailedCost(G, unitData);
TC = fuelCost + startupCost;
% Add penalty for constraint violations (if any)
penalty = 0;
fit = params.A / (TC + penalty);
end
%% Calculate Detailed Cost
function [fuelCost, startupCost, totalCost] = calculateDetailedCost(G, unitData)
[N, T] = size(G);
fuelCost = 0;
startupCost = 0;
% Calculate fuel costs
for t = 1:T
for i = 1:N
if G(i, t) > 0
a = unitData(i, 3);
b = unitData(i, 4);
c = unitData(i, 5);
FC = a + b * G(i, t) + c * G(i, t)^2;
fuelCost = fuelCost + FC;
end
end
end
% Calculate startup costs
for i = 1:N
offTime = 0;
for t = 1:T
if G(i, t) == 0
offTime = offTime + 1;
elseif t > 1 && G(i, t-1) == 0
% Unit is starting up
CST = unitData(i, 10); % Cold start time
HSC = unitData(i, 8); % Hot start cost
CSC = unitData(i, 9); % Cold start cost
if offTime <= CST
startupCost = startupCost + HSC;
else
startupCost = startupCost + CSC;
end
offTime = 0;
else
offTime = 0;
end
end
% Check first hour startup
if G(i, 1) > 0
initHour = unitData(i, 11);
if initHour < 0
% Unit was off initially
HSC = unitData(i, 8);
CSC = unitData(i, 9);
CST = unitData(i, 10);
if abs(initHour) <= CST
startupCost = startupCost + HSC;
else
startupCost = startupCost + CSC;
end
end
end
end
totalCost = fuelCost + startupCost;
end
%% Display Schedule
function displaySchedule(G, unitData)
[N, T] = size(G);
fprintf('\n%-8s', 'Unit/Hr');
for t = 1:T
fprintf('%8d', t);
end
fprintf('\n');
fprintf(repmat('-', 1, 8 + 8*T));
fprintf('\n');
for i = 1:N
fprintf('Unit %-3d', i);
for t = 1:T
if G(i, t) > 0
fprintf('%8.1f', G(i, t));
else
fprintf('%8s', '-');
end
end
fprintf('\n');
end
% Display hourly totals and demand
fprintf(repmat('-', 1, 8 + 8*T));
fprintf('\n%-8s', 'Total');
for t = 1:T
fprintf('%8.1f', sum(G(:, t)));
end
fprintf('\n');
end
%% Display Startup Pattern
function displayStartupPattern(G, unitData)
[N, T] = size(G);
fprintf('\n%-8s %-15s %-15s %-12s\n', 'Unit', 'Startup Hours', 'Off Time', 'Startup Cost');
fprintf(repmat('-', 1, 70));
fprintf('\n');
totalStartupCost = 0;
for i = 1:N
startupHours = [];
offTimes = [];
costs = [];
% Check initial startup
if G(i, 1) > 0
initHour = unitData(i, 11);
if initHour < 0
startupHours = [startupHours, 1];
HSC = unitData(i, 8);
CSC = unitData(i, 9);
CST = unitData(i, 10);
if abs(initHour) <= CST
offTimes = [offTimes, abs(initHour)];
costs = [costs, HSC];
totalStartupCost = totalStartupCost + HSC;
else
offTimes = [offTimes, abs(initHour)];
costs = [costs, CSC];
totalStartupCost = totalStartupCost + CSC;
end
end
end
% Check startups during schedule
offTime = 0;
for t = 1:T
if G(i, t) == 0
offTime = offTime + 1;
elseif t > 1 && G(i, t-1) == 0
% Unit is starting up
startupHours = [startupHours, t];
HSC = unitData(i, 8);
CSC = unitData(i, 9);
CST = unitData(i, 10);
if offTime <= CST
offTimes = [offTimes, offTime];
costs = [costs, HSC];
totalStartupCost = totalStartupCost + HSC;
else
offTimes = [offTimes, offTime];
costs = [costs, CSC];
totalStartupCost = totalStartupCost + CSC;
end
offTime = 0;
else
offTime = 0;
end
end
if ~isempty(startupHours)
hoursStr = sprintf('%d', startupHours(1));
for j = 2:length(startupHours)
hoursStr = [hoursStr, sprintf(', %d', startupHours(j))];
end
offStr = sprintf('%d', offTimes(1));
for j = 2:length(offTimes)
offStr = [offStr, sprintf(', %d', offTimes(j))];
end
costStr = sprintf('$%.0f', costs(1));
for j = 2:length(costs)
costStr = [costStr, sprintf(', $%.0f', costs(j))];
end
fprintf('Unit %-3d %-15s %-15s %-12s\n', i, hoursStr, offStr, costStr);
end
end
fprintf(repmat('-', 1, 70));
fprintf('\n%-50s $%.2f\n', 'Total Startup Cost:', totalStartupCost);
end
🔗 参考文献
图片
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP