偏见为什么是数据科学领域的一个大问题

简介:

如今,市场对数据科学家的需求是巨大的。但是也有不利之处,因为有偏见的数据,其所面临的风险也是巨大的。数据科学家凯西·奥尼尔为此创建了数据科学家的一个伦理政策。

人们可能不知道,数据科学有一个潜在的黑暗面,这是许多企业所忽视的东西。在当今社会,庞大的数据量对数据科学家造成巨大需求的时候,数据科学家凯西·奥尼尔不久撰写一本著作,名为“数字破坏武器:大数据如何增加不平等和威胁民主”。她担心的是,在急于利用大数据的情况下,可能会因为内置偏差使得结论不准确,并且可能具有相当的破坏性。她与高级技术编辑瓦勒瑞·斯威特一起探讨数据科学领域的偏见,以及为什么企业需要制定数据科学伦理政策。

奥尼尔:人们认为可以解决任何数据问题,对此我感到恼火。我对这些数据持怀疑态度。

斯威特:那么,那些对数据科学领域具有偏见的企业需要害怕什么呢?

凯蒂·奥尼尔:我们有一个信任问题,而如今却没有足够的审查。每个组织都需要数据科学家。但是,我们需要让数据科学家在这些团队中增加更多类型的人,以确保选择是经过深思熟虑的。数据科学家没有接受过道德伦理思考或思考这些问题的培训。社会学家可能会看到非预期的后果,但数据科学家可能会导致愚蠢的事情发生。人们的正义和预警数据是基于吉姆克鲁法律的,如果组织使用这些历史数据来训练当前的模型,他们将是种族主义。假设是,一旦你对数据做了一些事情,它就会自动使得价值和目标消失。社会科学家比数据科学家更为了解其不当之处。

斯威特:如果我们不注意数据科学领域的偏见,有什么风险?

奥尼尔:在这个过程中有一个风险,我们实际上得到的是自动化的偏见。如果团队中没有人提出正确的问题,你可以得到偏向于妇女或颜色或老年人的算法。在不久的将来,建立评估员工的内部算法的企业可能很快将面临歧视性流程的诉讼。这不是痴人说梦。人们需要监控这些事情,并确保做得更好,并确保他们不是歧视性的。

斯威特:这只是一个内部问题吗?

奥尼尔:当涉及到招聘等事情时,这是更明显的,但你可以创建面向客户的算法。如果你的业务与贷款有关,歧视可能就是一个很明显的因素。这都有很多例子。

斯威特:那么,人们如何应对数据科学领域的偏见?

奥尼尔:一些大学开始向数据科学家讲授伦理课程。但在这方面没有很多监管。生物医学实验有很多规则和伦理,研究人员必须征得同意。这种事情不存在于大数据的世界。我们都不断地进行A/B测试,大多数时候是愚蠢的事情,如“这个广告图片是什么颜色的?我们不必同意这些事情。这不是真正的测试,这个事情让人困扰。人们实际上却认为这些算法是完美的。没有理由认为他们工作会犯错。就像一家汽车厂商没有测量结果,没有经过安全测试,就将车辆直接上路行驶一样。因此人们必须测量和验证。”

目录
相关文章
|
4月前
|
机器学习/深度学习 自动驾驶 算法
探索数据科学中的模型可解释性
在数据科学领域,模型的可解释性正成为一项至关重要的议题。随着机器学习模型在多个行业的广泛应用,从金融风控到医疗诊断,理解模型决策的背后逻辑变得尤为重要。本文将探讨模型可解释性的重要性、挑战以及实现方法,旨在为读者提供对模型内部机制更深层次的理解,同时指出未来发展的可能方向。
|
6月前
|
机器学习/深度学习 算法 Java
现代数据科学中的机器学习技术发展与应用
本文探讨了现代数据科学领域中机器学习技术的发展和应用。我们介绍了机器学习的基本概念和原理,并探讨了它在前端、后端、Java、Python、C以及数据库等多种技术领域的具体应用。通过深入剖析不同领域的案例研究,我们展示了机器学习在解决实际问题和推动技术创新方面的巨大潜力。最后,我们对未来机器学习技术的发展趋势进行了展望。
|
机器学习/深度学习 人工智能 数据可视化
【数据科学】反思十年数据科学和可视化工具的未来
【数据科学】反思十年数据科学和可视化工具的未来
|
机器学习/深度学习 人工智能 算法
【数据科学】数据科学难题,怎么解释到底什么是数据科学
【数据科学】数据科学难题,怎么解释到底什么是数据科学
|
机器学习/深度学习 人工智能 算法
数据科学难题,怎么解释到底什么是数据科学
数据科学难题,怎么解释到底什么是数据科学
|
机器学习/深度学习 算法 搜索推荐
如何成为一名数据科学家?
9 月 28 日机器之心与大型创业社交平台燎原进行合作,举办了关于数据科学的线上讨论会。数据科学究竟是怎样起源兴起的?要怎样理解数据科学和计算机科学、统计学的关系?数据科学的应用价值到底体现在哪里?成为数据科学家需要具备哪些基本的知识储备?现在兴盛的各类数据大赛是怎么一回事?大数据时代「隐私」已死?
167 0
如何成为一名数据科学家?
|
机器学习/深度学习 人工智能 自然语言处理
五个给机器学习和数据科学入门者的学习建议
我从没写过代码。 当人们发现我的作品,他们通常会私信并提问。我不一定知道所有的答案,但我会尽量回复。人们最常问的问题是:「该从哪开始?」,其次是:「我需要多少数学基础?」
129 0
|
机器学习/深度学习 Python 算法
干货 | 五个给机器学习和数据科学入门者的学习建议
「我想学习机器学习和人工智能,该从哪开始呢?」 从这里开始。
3002 0
干货 | 五个给机器学习和数据科学入门者的学习建议
|
机器学习/深度学习 云计算
独家 | 是什么让数据科学家从优秀变得伟大?
本文从目前数据科学行业发展角度出发,总结了顶级数据科学家必备的几项技能。
1076 0
想成为数据科学家?先做到这6点吧!
想成为数据科学家?先做到这6点吧!
1471 0
下一篇
无影云桌面