StarRocks + Paimon: 构建 Lakehouse Native 数据引擎

简介: 12月10日,Streaming Lakehouse Meetup Online EP.2重磅回归,聚焦StarRocks与Apache Paimon深度集成,探讨Lakehouse Native数据引擎的构建。活动涵盖架构统一、多源联邦分析、性能优化及可观测性提升,助力企业打造高效实时湖仓一体平台。

继去年 Streaming Lakehouse Meetup 顺利举办后,Streaming Lakehouse Meetup · Online EP.2|Paimon × StarRocks 共话实时湖仓 于12月10日重磅回归。在这场直播中,阿里云计算平台事业部开发工程师张庆玉聚焦 StarRocks 与 Apache Paimon 的深度集成实践,探讨如何构建真正意义上的 Lakehouse Native 数据引擎。

在数据湖已成为企业数字化转型重要基础设施的当下,如何在一个统一的计算引擎中高效处理多种数据源,成为业界关注的焦点。StarRocks 通过与 Paimon 的深度融合,正逐步构建一套完整的 Lakehouse Native 解决方案——不仅支持多源联邦分析,更在性能、功能与可观测性上实现系统性突破。

StarRocks 数据湖总体架构:单一引擎,多源联邦分析

StarRocks 与 Paimon 的结合,首先体现在统一的架构设计理念上。借助统一的 Catalog 机制,StarRocks 能够在一个引擎内同时管理内部表和外部数据湖(如 Paimon 表),并支持跨 Catalog 的联邦查询。

这种设计延续了 StarRocks 存算分离的核心思想。虽然数据存储在远端的数据湖中,但查询执行仍能充分利用 StarRocks 在 OLAP 场景下的全部优化能力——从底层的 CPU 指令集加速、向量化执行引擎,到 IO 层面的缓存策略与合并读取,都可无缝应用于 Paimon 表的查询过程。这使得数据湖不再只是“冷存储”,而真正成为高性能分析的一部分。

image.png

StarRocks+Paimon 发展历程

StarRocks 对 Paimon 的支持并非一蹴而就,而是经历了多个版本的持续打磨。

  • StarRocks 3.1: 首次引入 Paimon 外表,通过 JNI (Java Native Interface)实现基本读取能力,并支持 Paimon 物化视图加速查询和谓词下推。这一阶段主要解决“能不能用”的问题。

  • StarRocks 3.2: 性能迎来显著提升—— FE 计划阶段引入 Metadata cache,缓存表分区和 manifests 等元数据,大幅加快计划生成;同时支持表级与列级统计信息采集,提升执行计划质量。3.2 版本还实现了物化视图的分区级别刷新功能,避免了全量刷新带来的资源浪费。此外,该版本进一步增强了对 Paimon DV 表的支持——StarRocks 查询引擎现在可以通过 Native Reader 直接读取 DV 表,相比之前基于 MOR(Merge-On-Read)表结构的 JNI 读取实现,读取性能获得大幅提升,尤其适用于高吞吐、低延迟的实时分析场景。

  • StarRocks 3.3: 标志着 StarRocks 向 Lakehouse Native 迈出关键一步,多项核心特性相继落地——相关细节将在下文逐一展开。

StarRocks+Paimon 最新进展

功能增强

  • Time Travel:StarRocks 现已支持通过 VERSION AS OFTIMESTAMP AS OF 查询历史快照或指定时刻的数据。这一能力在数据审计、故障回滚、AB Test 等场景中具有重要价值,让数据湖具备了更强的时间维度管理能力。

    image.png

  • Paimon Format Table:作为 Paimon 的一种兼容 Hive 格式的表类型,它允许用户将现有 Hive 表直接迁移到 Paimon,而 StarRocks 能无缝识别并高效查询,极大降低了迁移成本。

image.png

性能优化

  • Native Reader/Writer: 在未开启 DV 的情况下,MOR 表需要在查询时实时合并多个版本的增量数据,只能通过 JNI 调用 Java 层处理,存在类型转换、行列格式转换、JVM GC 等开销,效率低下且易引发 OOM。如今,StarRocks 基于 Paimon CPP SDK,在 BE 的 C++ 代码中直接实现 Paimon Native Scanner,实测显示 MOR 表读取性能提升超过 5 倍。写入侧同样受益,Native Writer 显著提升了写入吞吐。

    image.png

    Paimon Native Reader

    image.png

    Paimon Native Writer

  • Distributed Plan: 面对超大规模表(数十万文件),manifest 解析曾是 FE 的性能瓶颈。为此,StarRocks 引入 Distributed Plan 机制,当 manifest 数量过多时,FE 将解析任务分发至多个 CN 节点并行执行,各节点完成本地谓词下推后返回所需文件列表。这一设计使 plan 阶段的解析能力随 BE 资源线性扩展,有效缓解单点压力。

    image.png

  • DV Index Cache: 在高并发查询 Paimon 主键表时,index manifest 的全局反序列化会造成严重读放大——即使只查一个分桶,也要加载全量索引。于是,DV Index Cache 应运而生:按桶级别缓存 DV index 对象,避免重复解析。由于缓存的是 Java 对象而非序列化字节,还省去了反序列化开销。实测表明,该优化在高并发场景下 QPS 提升超 80%。

image.png

主键表点查在高并发下导致 FE CPU 和内存负载过高,主要因 Plan 阶段频繁从缓存读取 index manifest

可观测性:完善profile指标

StarRocks 完善了 Profile 指标体系,覆盖 plan 与执行两个阶段。在 plan 阶段,用户可查看 manifest 缓存命中率、远程读次数、谓词下推效果及最终扫描文件数,用于判断是否需调大缓存或优化查询条件。在 BE 执行阶段,则能清晰区分 JNI 与 native 读取的比例——若 JNI 占比较高,可能提示需要对表进行 full compaction,或考虑切换至 DV 表模式。

image.png

未来规划:性能对齐内表

StarRocks 团队的长期目标很明确:让查询 Paimon 的性能与体验对齐查询 StarRocks 本地表

目前,BE 执行层的差距已不大——两者均基于列存格式(如 Parquet/ORC),具备类似索引结构,IO 优化策略也高度通用。真正的挑战在于 FE 的 plan 阶段:Paimon 的 manifest 解析可能因 cache miss 触发高延迟的远程读,导致 plan 耗时波动,影响整体查询稳定性。

未来工作将聚焦于消除 plan 阶段的 latency-sensitive IO,通过更智能的缓存预热、异步解析、元数据压缩等手段,使 Paimon 查询的延迟变得稳定、可预测,彻底告别“毛刺”。

结语

StarRocks 与 Paimon 的深度融合,代表了现代湖仓架构的重要演进方向。它不只是“能查数据湖”,而是真正“懂数据湖”——从架构统一、功能完善到性能极致优化,每一步都围绕真实业务场景展开。

这套 Lakehouse Native 方案已在阿里集团内部多个高并发、低延迟场景中落地验证,为电商、物流、金融等业务提供坚实支撑。随着社区生态的持续壮大,我们有理由相信,StarRocks + Paimon 将成为企业构建下一代实时数据平台的核心引擎。

EMR Serverless StarRocks:2025年9月登顶全球TPC-H 10TB 性能和性价比榜单,性能比传统 OLAP 引擎提升 3-5 倍,100%兼容开源StarRocks,欢迎免费测试 >>

https://free.aliyun.com/?searchKey=StarRocks

前往阿里云EMR官网开通 Serverless StarRocks试用并分享体验反馈,晒图可以领取精美礼品:https://x.sm.cn/EDWpX6I

阿里云DLF提供商业版Paimon服务,新用户免费试用100GB存储,1000CUH,点击领取https://free.aliyun.com/?productCode=dlf

更多内容


活动推荐

复制下方链接或者扫描左边二维码

即可免费试用阿里云 Serverless Flink,体验新一代实时计算平台的强大能力!

了解试用详情:https://free.aliyun.com/?productCode=sc

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
25天前
|
人工智能 弹性计算 运维
探秘 AgentRun丨为什么应该把 LangChain 等框架部署到函数计算 AgentRun
阿里云函数计算 AgentRun,专为 AI Agent 打造的一站式 Serverless 基础设施。无缝集成 LangChain、AgentScope 等主流框架,零代码改造即可享受弹性伸缩、企业级沙箱、模型高可用与全链路可观测能力,助力 Agent 高效、安全、低成本地落地生产。
310 48
|
23天前
|
数据采集 人工智能 IDE
告别碎片化日志:一套方案采集所有主流 AI 编程工具
本文介绍了一套基于MCP架构的轻量化、多AI工具代码采集方案,支持CLI、IDE等多类工具,实现用户无感、可扩展的数据采集,已对接Aone日志平台,助力AI代码采纳率分析与研发效能提升。
398 46
告别碎片化日志:一套方案采集所有主流 AI 编程工具
|
23天前
|
人工智能 安全 调度
AI工程vs传统工程 —「道法术」中的变与不变
本文从“道、法、术”三个层面对比AI工程与传统软件工程的异同,指出AI工程并非推倒重来,而是在传统工程坚实基础上,为应对大模型带来的不确定性(如概率性输出、幻觉、高延迟等)所进行的架构升级:在“道”上,从追求绝对正确转向管理概率预期;在“法”上,延续分层解耦、高可用等原则,但建模重心转向上下文工程与不确定性边界控制;在“术”上,融合传统工程基本功与AI新工具(如Context Engineering、轨迹可视化、多维评估体系),最终以确定性架构驾驭不确定性智能,实现可靠价值交付。
309 41
AI工程vs传统工程 —「道法术」中的变与不变
|
30天前
|
SQL 人工智能 分布式计算
从工单、文档到结构化知识库:一套可复用的 Agent 知识采集方案
我们构建了一套“自动提取 → 智能泛化 → 增量更新 → 向量化同步”的全链路自动化 pipeline,将 Agent 知识库建设中的收集、提质与维护难题转化为简单易用的 Python 工具,让知识高效、持续、低门槛地赋能智能体。
312 36
|
23天前
|
人工智能 运维 监控
进阶指南:BrowserUse + AgentRun Sandbox 最佳实践
本文将深入讲解 BrowserUse 框架集成、提供类 Manus Agent 的代码示例、Sandbox 高级生命周期管理、性能优化与生产部署策略。涵盖连接池设计、安全控制、可观测性建设及成本优化方案,助力构建高效、稳定、可扩展的 AI 浏览器自动化系统。
424 47
|
22天前
|
人工智能 运维 前端开发
阿里云百炼高代码应用全新升级
阿里云百炼高代码应用全新升级,支持界面化代码提交、一键模板创建及Pipeline流水线部署,全面兼容FC与网关多Region生产环境。开放构建日志与可观测能力,新增高中低代码Demo与AgentIdentity最佳实践,支持前端聊天体验与调试。
364 52
|
25天前
|
数据采集 监控 数据可视化
快速上手:LangChain + AgentRun 浏览器沙箱极简集成指南
AgentRun Browser Sandbox 是基于云原生函数计算的浏览器沙箱服务,为 AI Agent 提供安全、免运维的浏览器环境。通过 Serverless 架构与 CDP 协议支持,实现网页抓取、自动化操作等能力,并结合 VNC 实时可视化,助力大模型“上网”交互。
435 43
|
1月前
|
人工智能 安全 API
Nacos 安全护栏:MCP、Agent、配置全维防护,重塑 AI Registry 安全边界
Nacos安全新标杆:精细鉴权、无感灰度、全量审计!
677 66
|
24天前
|
存储 数据采集 弹性计算
面向多租户云的 IO 智能诊断:从异常发现到分钟级定位
当 iowait 暴涨、IO 延迟飙升时,你是否还在手忙脚乱翻日志?阿里云 IO 一键诊断基于动态阈值模型与智能采集机制,实现异常秒级感知、现场自动抓取、根因结构化输出,让每一次 IO 波动都有据可查,真正实现从“被动响应”到“主动洞察”的跃迁。
256 56