Direct交换机

简介: Direct交换机根据RoutingKey将消息路由到指定队列,实现精准消息分发。与Fanout广播模式不同,Direct支持多队列绑定相同Key,兼具灵活性与定向投递优势。

3.4.1 介绍

在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。

在Direct模型下:

  • 队列与交换机的绑定,不能是任意绑定了,而是要指定一个RoutingKey(路由key)
  • 消息的发送方在 向 Exchange发送消息时,也必须指定消息的 RoutingKey
  • Exchange不再把消息交给每一个绑定的队列,而是根据消息的Routing Key进行判断,只有队列的Routingkey与消息的 Routing key完全一致,才会接收到消息

案例需求如图

  1. 声明一个名为hmall.direct的交换机
  2. 声明队列direct.queue1,绑定hmall.directbindingKeybludred
  3. 声明队列direct.queue2,绑定hmall.directbindingKeyyellowred
  4. consumer服务中,编写两个消费者方法,分别监听direct.queue1和direct.queue2
  5. 在publisher中编写测试方法,向hmall.direct发送消息

3.4.2 测试

3.4.2.1 创建队列和交换机

首先在控制台声明两个队列direct.queue1direct.queue2,这里不再展示过程:

然后声明一个direct类型的交换机,命名为hmall.direct:

然后使用redblue作为key,绑定direct.queue1hmall.direct

同理,使用redyellow作为key,绑定direct.queue2hmall.direct,步骤略,最终结果:

3.4.2.2 监听队列

在consumer服务的SpringRabbitListener中添加方法:

@RabbitListener(queues = "direct.queue1")
public void listenDirectQueue1(String msg) {
    System.out.println("消费者1接收到direct.queue1的消息:【" + msg + "】");
}
@RabbitListener(queues = "direct.queue2")
public void listenDirectQueue2(String msg) {
    System.out.println("消费者2接收到direct.queue2的消息:【" + msg + "】");
}

3.4.2.3 消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

@Test
public void testSendDirectExchange() {
    // 交换机名称
    String exchangeName = "hmall.direct";
    // 消息
    String message = "红色警报!日本乱排核废水,导致海洋生物变异,惊现哥斯拉!";
    // 发送消息
    rabbitTemplate.convertAndSend(exchangeName, "red", message);
}

由于使用的red这个key,所以两个消费者都收到了消息:

我们再切换为blue这个key:

@Test
public void testSendDirectExchange() {
    // 交换机名称
    String exchangeName = "hmall.direct";
    // 消息
    String message = "最新报道,哥斯拉是居民自治巨型气球,虚惊一场!";
    // 发送消息
    rabbitTemplate.convertAndSend(exchangeName, "blue", message);
}

你会发现,只有消费者1收到了消息:

3.4.3 小结

描述下Direct交换机与Fanout交换机的差异?

  • Fanout交换机将消息路由给每一个与之绑定的队列
  • Direct交换机根据RoutingKey判断路由给哪个队列
  • 如果多个队列具有相同的RoutingKey,则与Fanout功能类似
相关文章
|
2月前
|
SQL 关系型数据库 数据库
分布式事务
本文介绍了分布式事务的概念、典型场景及解决方案。在微服务架构下,一次业务操作需跨多个数据库和远程调用协作完成,传统本地事务无法保证整体一致性。通过Seata框架可实现分布式事务控制,其AT模式无侵入、高性能,基于两阶段提交与undo log实现最终一致;XA模式则提供强一致性但性能较低。文章还结合下单、支付等场景演示了Seata的集成与应用。
|
2月前
|
人工智能 监控 Java
请求限流
本文介绍如何使用Sentinel实现接口限流与降级,通过配置QPS阈值保护商品查询接口,并结合JMeter进行压测验证。同时讲解了线程隔离机制,包括信号量隔离的应用,确保系统在高并发下的稳定性。
请求限流
|
2月前
|
人工智能 Java 应用服务中间件
微服务保护
本节介绍微服务雪崩问题及保护方案。当某服务故障或负载过高,可能引发级联失败,导致整个系统不可用。为避免此问题,需采取熔断、降级、超时、线程隔离和限流等措施。常用工具包括Hystrix、Resilience4j和Sentinel,课程重点讲解Sentinel的使用。
|
2月前
|
存储 缓存 负载均衡
Nacos注册中心
本文介绍Nacos的安装部署、服务注册与发现、权重控制、集群隔离及临时/持久实例等核心功能,涵盖从环境搭建到高级配置的完整实践,助力微服务架构高效管理。
 Nacos注册中心
|
2月前
|
负载均衡 Java Maven
Eureka服务注册与发现
本文介绍如何搭建Eureka注册中心,实现user-service与order-service的注册,并通过多实例部署模拟负载均衡场景。涵盖工程创建、配置文件编写、服务启动及常见问题解决方案,帮助掌握Spring Cloud服务注册与发现核心机制。
 Eureka服务注册与发现
|
2月前
|
uml C语言
系统时序图
时序图是UML中描述对象间消息传递时间顺序的交互图,横轴为对象,纵轴为时间。用于展示交互流程、强调时序关系,直观表达并发过程。主要元素包括角色、对象、生命线、控制焦点和消息等,广泛应用于系统设计与分析。
系统时序图
|
2月前
|
项目管理 开发者
业务架构图
本文系统阐述了业务架构图的核心概念与绘制方法,涵盖业务定义、架构分层(组织层、应用层、能力层、基础层)、模块划分及功能分解,并结合医院场景示例,说明如何通过分层、分模块、分功能构建清晰的业务视图,提升客户理解与开发效率。
|
11月前
|
人工智能 JavaScript Devops
如何在云效中使用 DeepSeek 等大模型实现 AI 智能评审
除了代码智能补全外,AI 代码智能评审是 DevOps 领域受开发者广泛关注的另一场景了。本文,我们将结合云效代码管理 Codeup、流水线 Flow 和 DeepSeek,分享一种企业可快速自主接入,即可实现的 AI 智能评审解决方案,希望给大家一些启发。
540 18
|
Web App开发 数据采集 JavaScript
Selenium和Pyppeteer有什么区别?
Selenium和Pyppeteer均为浏览器自动化工具,适用于网页测试与爬虫开发。Selenium需手动配置环境,支持多浏览器;Pyppeteer自动下载Chromium,仅支持Chrome,但配置简便、性能更优,适合Chrome特定需求的用户。Selenium则适合跨浏览器、跨平台的复杂场景。
|
人工智能 Serverless API
云原生应用开发平台CAP评测
CAP(Cloud Application Platform)是阿里云提供的一站式应用开发及管理平台,集成了Serverless计算、AI应用模板、先进开发者工具和企业级应用管理功能。本文结合官方文档与实际操作,全面评测了CAP的产品优势、实际操作体验及性能表现,展示了其在降低成本、提高开发效率和灵活性方面的卓越能力。