基于 RocketMQ 构建 高可靠 A2A 通信通道

简介: A2A协议由Google发起,旨在实现跨厂商AI智能体的标准化通信。通过RocketMQ异步支持,提供高可靠、开箱即用的多智能体协同方案,助力构建开放、可扩展的智能体生态体系。

3.1 A2A 协议
Agent-to-Agent(简称 A2A)是一项由 Google 于 2025 年发起,并贡献至 Linux 基金会的开源通信协议。其核心目标是建立跨厂商、跨框架的标准化互操作机制,使异构 AI 智能体(Agents)能够自动发现、可靠通信并高效协作,从而构建开放、可组合、可扩展的多智能体系统生态。

3.2 单智能体 vs. 多智能体架构:能力边界与协同范式的演进
在深入探讨如何构建 A2A 通信之前,我们首先需要理解,为什么多智能体协同是必然趋势。我们从六个维度对比单智能体与多智能体的能力差异:

3.3 同步 RPC 与 RocketMQ 异步通信的对比
明确了多智能体架构的优势后,下一个关键问题是:如何实现 Agent 之间的通信?
A2A 协议原生支持的同步 RPC 协议包括 JSON-RPC、gRPC 和 REST。然而,在企业级的复杂场景下,这些同步协议面临诸多挑战。下表从多个维度对比同步 RPC 与 RocketMQ 异步通信模型的差异:

3.4 开箱即用:基于 RocketMQ 的 A2A 协议实现
为加速 A2A 协议在异步通信场景的落地,我们基于 RocketMQ SDK 实现了 A2A 协议的 ClientTransport 接口。该实现旨在帮助用户在搭建多智能体应用时,能够专注于自身业务逻辑,快速构建高可靠、开箱即用的 A2A 通信方案。发送普通同步请求:
发送普通同步请求:
EventKind sendMessage(MessageSendParams request, @Nullable ClientCallContext context)

发送Stream请求:
void sendMessageStreaming(MessageSendParams request, Consumer eventConsumer…)

重订订阅任务数据:
void resubscribe(TaskIdParams request, Consumer eventConsumer, Consumer errorConsumer

查询任务完成状态:
Task getTask(TaskQueryParams request, @Nullable ClientCallContext context)

取消任务执行:
Task cancelTask(TaskIdParams request, @Nullable ClientCallContext context)

以及其他方法
开源项目地址
基于 RocketMQ 实现的 A2A 通信 RocketMQTransport 部分代码现已开源,项目地址点击跳转

3.5 架构解析:如何通过 RocketMQ 实现 Agent 间通信?
在一个典型的多智能体协作架构中,通信流程如下:
应用 A 扮演 Supervisor 角色,负责对用户输入的需求进行任务分解,并将拆分后的子任务分别发送至应用 B 的业务 Topic(Normal Topic1)和应用 C 的业务 Topic(Normal Topic2)。
应用 B 集群从 Normal Topic1 拉取消息并执行相应逻辑处理,随后将结果发布到应用 A 订阅的 LiteTopic。
应用 C 集群则从 Normal Topic2 拉取消息进行处理,并同样将结果写入该 LiteTopic。
应用 A 集群通过拉取 LiteTopic 中的消息,汇聚各子任务响应结果,进而驱动后续的业务逻辑编排。

相关文章
|
12天前
|
数据采集 人工智能 安全
|
8天前
|
编解码 人工智能 自然语言处理
⚽阿里云百炼通义万相 2.6 视频生成玩法手册
通义万相Wan 2.6是全球首个支持角色扮演的AI视频生成模型,可基于参考视频形象与音色生成多角色合拍、多镜头叙事的15秒长视频,实现声画同步、智能分镜,适用于影视创作、营销展示等场景。
603 4
|
8天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
346 164
|
7天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
351 155