Java泛型类型擦除以及类型擦除带来的问题

简介: Java泛型在编译时会进行类型擦除,所有泛型信息被移除,仅保留原始类型(如Object或限定类型)。例如,List<String>和List<Integer>在运行时均为List。类型检查在编译期完成,针对引用而非对象本身。擦除后通过桥方法解决多态冲突,并自动插入强制转换。静态成员不能使用类的泛型参数,基本类型需用包装类。

1.什么是泛型擦除

我们都知道Java的泛型是伪泛型,即编译期间所有的泛型信息都会被擦除,如我们代码定义了:List<Object>和List<String>,但是对于JVM而言,看到的只有List,由泛型附加的类型信息对于JVM而言是看不到的。代码说明如下:

1.1 原始类型擦除后相等

public class Test {
    public static void main(String[] args) {
        ArrayList<String> list1 = new ArrayList<String>();
        list1.add("abc");
        ArrayList<Integer> list2 = new ArrayList<Integer>();
        list2.add(123);
        System.out.println(list1.getClass() == list2.getClass());
    }
}

在这个例子中,我们定义了两个ArrayList数组,不过一个是ArrayList<String>泛型类型的,只能存储字符串;一个是ArrayList<Integer>泛型类型的,只能存储整数,最后,我们通过list1对象和list2对象的getClass()方法获取他们的类的信息,最后发现结果为true。说明泛型类型String和Integer都被擦除掉了,只剩下原始类型

1.2 反射添加的元素被擦除

public static void main(String[] args) 
    throws NoSuchMethodException, InvocationTargetException, IllegalAccessException {
        ArrayList<Integer> list = new ArrayList<Integer>();
        list.add(1);  //这样调用 add 方法只能存储整形,因为泛型类型的实例为 Integer
        list.getClass().getMethod("add", Object.class).invoke(list, "asd");
        for (int i = 0; i < list.size(); i++) {
            // 输出1  asd
            System.out.println(list.get(i));
        }
    }

如果直接调用add()方法,那么只能存储整数数据,不过当我们利用反射调用add()方法的时候,却可以存储字符串,这说明了Integer泛型实例在编译之后被擦除掉了,只保留了原始类型

2.什么是泛型擦除后保留的原始类型

原始类型 就是擦除去了泛型信息,最后在字节码中的类型变量的真正类型,无论何时定义一个泛型,相应的原始类型都会被自动提供,类型变量擦除,并使用其限定类型(无限定的变量用Object)替换。举例说明

class Pair<T> {  
    private T value;  
    public T getValue() {  
        return value;  
    }  
    public void setValue(T  value) {  
        this.value = value;  
    }  
}

其对应的原始类型就是

class Pair {  
    private Object value;  
    public Object getValue() {  
        return value;  
    }  
    public void setValue(Object  value) {  
        this.value = value;  
    }  
}

但如果该类的定义有限定,比如继承了,那么就会产生变化:

public class Pair<T extends Comparable> {}

此时原始类型就是Comparable,而不再是Object

3.泛型擦除引起的问题及解决方法

3.1 先检查,再编译以及编译的对应和引用传递问题

这里我们可能会有一个疑问,既然说类型变量会在编译的时候擦除掉,那为什么上面的ArrayList中添加String类型的时候就报错了呢,因为String编译时候也会变成Object啊?

A:因为JAVA编译器是通过先检查代码中泛型的类型,然后再进行类型擦除,再进行编译的。那么这个检查到底是针对谁的,我们需要再明确下

A2:如我们上面代码是:

ArrayList list = new ArrayList();

现在我们写成:

ArrayList<String> list = new ArrayList<String>();

此时如果我们与之前的代码兼容,各种引用传值之间,必然会出现下面情况:

ArrayList<String> list1 = new ArrayList(); //第一种 情况
ArrayList list2 = new ArrayList<String>(); //第二种 情况

这样没错,但是会有个编译时警告,不过在第一种情况下,可以实现与完全使用泛型参数一样的效果,但是第二种没有效果。

因为类型检查是编译时完成的,new ArrayList()只是在内存中开辟一个存储空间,可以存储任何类型的对象,而真正涉及类型检查的是“它的引用”,即list1的方法调用,如add方法,所以list1引用能够完成泛型类型检查(前面声明了String),但是list2(后面声明的只是开辟内存空间,不涉及)由于前面的声明没有添加泛型,所以不行。

所以这里我们也大概知道了,所谓的类型(泛型)检查,是针对引用的。谁是一个引用,用这个引用调用泛型方法,就会对这个引用所调用的方法进行类型检查,而无关它真正引用的对象。

3.2 自动类型转换

因为类型擦除的问题,所以所有的泛型类型变量在最后都会被替换成原始类型,既然都被替换了,那么为什么获取的时候,不需要进行强制类型转换呢?可以看下 ArrayList.get() 方法

public E get(int index) {  
    RangeCheck(index);  
    return (E) elementData[index];  
}

可以看到,在return之前,会根据泛型变量进行强转。假设泛型类型变量为Date,虽然泛型信息会被擦除掉,但是会(E) elementData[index],编译为(Date) elementData[index]。所以我们不用自己进行强转。当存取一个泛型域时也会自动插入强制类型转换。假设Pair类的value域是public的,那么表达式:

Date date = pair.value;

也会自动地在结果字节码中插入强制类型转换。

3.3 泛型擦除与多态的冲突与解决方法

假设有一个泛型类

class Pair<T> {  
    private T value;  
    public T getValue() {  
        return value;  
    }  
    public void setValue(T value) {  
        this.value = value;  
    }  
}

然后有一个子类需要继承

class DateInter extends Pair<Date> {  
    @Override  
    public void setValue(Date value) {  
        super.setValue(value);  
    }  
    @Override  
    public Date getValue() {  
        return super.getValue();  
    }  
}

在这个子类中,我们设定父类的泛型类型为Pair,在子类中,我们覆盖了父类的两个方法,我们的原意是这样的:将父类的泛型类型限定为Date,那么父类里面的两个方法的参数都为Date类型

所以,我们在子类中重写这两个方法一点问题也没有,实际上,从他们的@Override标签中也可以看到,一点问题也没有,实际上是这样的吗?

分析:实际上,类型擦除后,父类的的泛型类型全部变为了原始类型Object,所以父类编译之后会变成下面的样子:

class Pair {  
    private Object value;  
    public Object getValue() {  
        return value;  
    }  
    public void setValue(Object  value) {  
        this.value = value;  
    }  
}

而此时,子类中类型依然是Date,这如果还是在继承关系中,那么根本就不是重写,而是重载了。通过反编译会发现子类中的方法Object getValue()和Date getValue()是同 时存在的,可是如果是常规的两个方法,他们的方法签名是一样的,也就是说虚拟机根本不能分别这两个方法。如果是我们自己编写Java代码,这样的代码是无法通过编译器的检查的,但是虚拟机却是允许这样做的,因为虚拟机通过参数类型和返回类型来确定一个方法,所以编译器为了实现泛型的多态允许自己做这个看起来“不合法”的事情,然后交给虚拟器去区别

3.4 泛型类型变量不能是基本数据类型

不能用类型参数替换基本类型。就比如,没有ArrayList<double>,只有ArrayList<Double>。因为当类型擦除后,ArrayList的原始类型变为Object,但是Object类型不能存储double值,只能引用Double的值。

3.5 编译时集合的instanceof(可能面试考察)

ArrayList<String> arrayList = new ArrayList<String>();

因为类型擦除之后,ArrayList<String>只剩下原始类型,泛型信息String不存在了。那么,编译时进行类型查询的时候使用下面的方法是错误的

if( arrayList instanceof ArrayList<String>)

3.6 泛型在静态方法和静态类中的问题(可能面试考察)

泛型类中的静态方法和静态变量不可以使用泛型类所声明的泛型类型参数,举例说明:

public class Test2<T> {    
    public static T one;   //编译错误    
    public static T show(T one){ //编译错误    
        return null;    
    }    
}

因为泛型类中的泛型参数的实例化是在对象定义时候指定的,而静态变量和静态方法是不需要通过对象来调用的,对象都没有创建,如何确定这个泛型是何类型呢?所以说上面的代码明显是错误的。


但是需要注意下面的一种特殊情况

public class Test2<T> {    
    public static <T>T show(T one){ //这是正确的    
        return null;    
    }    
}

因为这是一个泛型方法,在泛型方法中使用过的T是自己在方法中定义的T,而不是泛型中的T

相关文章
|
2月前
|
前端开发 程序员 开发者
常见注解及使用说明
本文介绍了SpringMVC中@RequestMapping注解的作用与原理,讲解其如何将前端HTTP请求映射到后端控制器方法,并列举了常用衍生注解如@GetMapping、@PostMapping等,帮助开发者理解接口路径的定义机制,实现前后端对接。
|
2月前
|
Java 应用服务中间件 网络安全
Java基础 Eclipse运行SSM/SSH项目教程
本文介绍了Eclipse环境下Java Web项目的运行与配置流程,涵盖JDK、Tomcat等基础软件安装,项目导入及服务器绑定方法,并提供SSH/SSM框架案例与常见错误解决方案。
Java基础 Eclipse运行SSM/SSH项目教程
|
2月前
|
监控 算法 Unix
Thread.sleep(0) 到底有什么用
Thread.Sleep用于让线程暂停执行一段时间,期间不参与CPU竞争。Sleep(1000)不保证精确唤醒时间,受系统调度影响;而Sleep(0)会触发系统立即重新分配CPU,给其他线程执行机会,避免界面假死。两者作用不可忽视。
|
2月前
|
缓存 Java Nacos
@RefreshScope热更新原理
本文深入解析Spring Cloud中@RefreshScope注解实现配置热更新的原理。通过分析其组合注解特性,重点剖析@Scope(&quot;refresh&quot;)如何借助动态代理与缓存机制,在配置变更时触发Bean重建,结合Nacos实现配置自动刷新,从而达到无需重启应用即可生效的效果。
@RefreshScope热更新原理
|
2月前
|
存储 负载均衡 算法
负载均衡算法
本文介绍多种负载均衡算法:随机、轮询、最小活跃数、源地址哈希及一致性哈希。涵盖适用场景、实现原理与代码示例,适用于服务器性能均等或加权情况,强调动态分配与请求稳定性。
 负载均衡算法
|
2月前
|
Java Sentinel 微服务
服务保护、分布式事务
本课程聚焦微服务保护核心技能,涵盖雪崩问题、熔断降级、限流隔离等机制,学习Sentinel实现熔断、降级、限流策略配置,掌握FallbackFactory降级逻辑编写,理解CAP原理与Seata分布式事务,全面提升微服务高可用设计能力。
|
2月前
|
测试技术 数据处理 微服务
基于稳定版量化交易系统开发案例设计的功能需求实现
在数字化时代,量化交易系统需兼顾高效性与稳定性。本文聚焦稳定版系统开发,探讨案例设计与功能需求,涵盖微服务架构、实时行情、信号生成、风控等核心环节,为构建精准、可靠的量化交易体系提供实践指导。
|
2月前
|
NoSQL Redis Docker
Redis集群搭建
Redis主从实现读写分离,提升并发能力;哨兵保障高可用,自动故障恢复;分片集群支持海量数据存储与高并发读写,三者结合构建高性能、高可用分布式缓存架构。
|
2月前
|
存储 NoSQL 关系型数据库
1-MongoDB相关概念
MongoDB是一款高性能、无模式的文档型NoSQL数据库,适用于高并发、海量数据、高可用性场景。其灵活的BSON文档模型、丰富的查询支持及水平扩展能力,广泛应用于社交、游戏、物联网等领域,尤其适合非事务性、快速迭代的应用系统。
 1-MongoDB相关概念
|
2月前
|
缓存 算法 Java
IO/线程 线程池
本文深入剖析Java线程池的工作原理,涵盖ThreadPoolExecutor与ScheduledThreadPoolExecutor的实现机制。通过源码分析,详解线程池如何管理线程生命周期、任务调度策略及延时队列等核心组件,并结合Executors工具类说明各类线程池的应用场景。

热门文章

最新文章