One Trick Per Day

简介: 初始化Map应避免容量设置不当,推荐使用Guava的`newHashMapWithExpectedSize`或手动计算初始容量。禁止使用`Executors`创建线程池,易因无界队列或过多线程导致OOM,应通过`ThreadPoolExecutor`显式定义参数。`Arrays.asList`返回不可变列表,禁止修改操作。遍历Map时优先使用`entrySet`或JDK8的`forEach`提升性能。`SimpleDateFormat`线程不安全,建议用`ThreadLocal`隔离或改用Java 8时间API。并发更新记录时,根据冲突概率选择乐观锁或悲观锁,确保数据一致性。

1.初始化Map大小并非用多少指定多少
● 初始化Map并非用多少初始化Size是多少,建议使用Guava,避免扩容引起的动荡()
说明
● 如:Map map = new HashMap<>(1); 在具体使用时,并非size=1,而是最近的2的幂等,如1实际是2,3实际是4,9实际是16
使用方法
● 依赖gvaua:Map map = Maps.newHashMapWithExpectedSize(7);


com.google.guava
guava
17.0

● 手动声明:Map map = new HashMap<>(实际存储个数 / 0.75 + 1);
2.线程池初始化严禁使用Executors
使用线程池时候,我们可能会使用下面四个场景,这在alibaba代码规范中都是明令禁止的
// 创建一个单线程化的Executor[因为数量固定,可能会堆积大量请求,导致OOM]
private static ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();

// 创建一个固定数目线程的线程池[因为数量固定,可能会堆积大量请求,导致OOM]
private static ExecutorService fixedThreadPool = Executors.newFixedThreadPool(10);

// 创建一个可执行命令的单线程Executor[可能会创建大量的线程,导致OOM]
private static ExecutorService singleThreadScheduledExecutor = Executors.newSingleThreadScheduledExecutor();

// 创建一个可缓存的线程池(60S存活时间)[可能会创建大量的线程,导致OOM]
private static ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
我们先来一个简单的例子,模拟一下使用 Executors 导致 OOM 的情况。
public class ExecutorsDemo {
private static ExecutorService executor = Executors.newFixedThreadPool(15);
public static void main(String[] args) {
for (int i = 0; i < Integer.MAX_VALUE; i++) {
executor.execute(new SubThread());
}
}
}
class SubThread implements Runnable {
@Override
public void run() {
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
//do nothing
}
}
}
通过指定 JVM 参数:-Xmx8m -Xms8m 运行以上代码,会抛出 OOM:
Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416)
at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371)
at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)
以上代码指出,ExecutorsDemo.java 的第 16 行,就是代码中的 executor.execute(new SubThread());。
通过上面的例子,我们知道了 Executors 创建的线程池存在 OOM 的风险,那么到底是什么原因导致的呢?我们需要深入 Executors 的源码来分析一下。其实,在上面的报错信息中,我们是可以看出蛛丝马迹的,在以上的代码中其实已经说了,真正的导致 OOM 的其实是 LinkedBlockingQueue.offer 方法。
Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416)
at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371)
at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)
如果读者翻看代码的话,也可以发现,其实底层确实是通过 LinkedBlockingQueue 实现的:
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue());
}
如果读者对 Java 中的阻塞队列有所了解的话,看到这里或许就能够明白原因了。Java 中 的 BlockingQueue 主 要 有 两 种 实 现, 分 别 是 ArrayBlockingQueue 和 LinkedBlockingQueue。ArrayBlockingQueue 是一个用数组实现的有界阻塞队列,必须设置容量。LinkedBlockingQueue 是一个用链表实现的有界阻塞队列,容量可以选择进行设置,不设置的话,将是一个无边界的阻塞队列,最大长度为 Integer.MAX_VALUE。这里的问题就出在:不设置的话,将是一个无边界的阻塞队列,最大长度为Integer.MAX_VALUE。也就是说,如果我们不设置 LinkedBlockingQueue 的容量的话,其默认容量将会是 Integer.MAX_VALUE。 而 newFixedThreadPool 中创建 LinkedBlockingQueue 时,并未指定容量。此时,LinkedBlockingQueue 就是一个无边界队列,对于一个无边界队列来说,是可以不断的向队列中加入任务的,这种情况下就有可能因为任务过多而导致内存溢出问题。上面提到的问题主要体现在 newFixedThreadPool 和 newSingleThreadExecutor 两个工厂方法上,并不是说newCachedThreadPool 和 newScheduledThreadPool 这两个方法就安全了,这两种方式创建的最大线程数可能是Integer.MAX_VALUE,而创建这么多线程,必然就有可能导致 OOM

正确使用:
private static ExecutorService executor = new ThreadPoolExecutor(10, 10, 60L, TimeUnit.SECONDS,
new ArrayBlockingQueue(10));
这种情况下,一旦提交的线程数超过当前可用线程数时,就会抛出java.util.concurrent.RejectedExecutionException,这是因为当前线程池使用的队列是有边界队列,队列已经满了便无法继续处理新的请求。但是异常(Exception)总比发生错误(Error)要好。
但是部分alibaba作者更推荐使用guava创建对应的线程池,示例如下:
public class ExecutorsDemo {
private static ThreadFactory namedThreadFactory = new
ThreadFactoryBuilder()
.setNameFormat("demo-pool-%d").build();
private static ExecutorService pool = new ThreadPoolExecutor(5, 200,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue(1024), namedThreadFactory, new
ThreadPoolExecutor.
AbortPolicy());
public static void main(String[] args) {
for (int i = 0; i < Integer.MAX_VALUE; i++) {
pool.execute(new SubThread());
}
}
}
通过上述方式创建线程时,不仅可以避免 OOM 的问题,还可以自定义线程名称,更加方便的出错的时候溯源。
3.Arrays.asList之后不要调用修改操作
String[] str = new String[] { "you", "wu" };
List list = Arrays.asList(str);
因为asList返回的实际是一个Arrays内部类,并没有实现集合的修改方法(add/remove/clear)// 当操作修改方法时,会报UnsupportedOperationException。
第一种情况:list.add("yangguanbao"); 运行时异常。
第二种情况:str[0] = "gujin"; 那么 list.get(0)也会随之修改。[涉及栈堆指针操作,修改数组的数据,导致同样引用该数据的list值被改变]

4.使用 entrySet 遍历 Map 类集合 KV
说明:keySet 其实是遍历了 2 次,一次是转为 Iterator 对象,另一次是从 hashMap 中取出key 所对应的 value。而 entrySet 只是遍历了一次就把 key 和 value 都放到了 entry 中,效率更高。
如果是 JDK8,使用 Map.foreach 方法。
正例:values()返回的是 V 值集合,是一个 list 集合对象;keySet()返回的是 K 值集合,是一个 Set 集合对象;entrySet()返回的是 K-V 值组合集合。
5.SimpleDateFormat不要定义为static
SimpleDateFormat 是线程不安全的类,一般不要定义为 static 变量,如果定义为static,必须加锁,或者使用 DateUtils 工具类。
正例:注意线程安全,使用 DateUtils。亦推荐如下处理:
private static final ThreadLocal df = new ThreadLocal() {
@Override
protected DateFormat initialValue() {
return new SimpleDateFormat("yyyy-MM-dd");
}
};
说明:如果是 JDK8 的应用,可以使用 Instant 代替 Date,LocalDateTime 代替 Calendar,DateTimeFormatter 代替 SimpleDateFormat,官方给出的解释:simple beautiful strong immutable thread-safe。
6.并发修改同一记录时需要加锁
要么在应用层加锁,要么在缓存加锁,要么在数据库层使用乐观锁,使用 version 作为更新依据。
说明:如果每次访问冲突概率小于 20%,推荐使用乐观锁,否则使用悲观锁。乐观锁的重试次数不得小于 3 次

相关文章
|
12天前
|
数据采集 人工智能 安全
|
7天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
344 164
|
6天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
345 155
|
7天前
|
编解码 人工智能 自然语言处理
⚽阿里云百炼通义万相 2.6 视频生成玩法手册
通义万相Wan 2.6是全球首个支持角色扮演的AI视频生成模型,可基于参考视频形象与音色生成多角色合拍、多镜头叙事的15秒长视频,实现声画同步、智能分镜,适用于影视创作、营销展示等场景。
581 4
|
15天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
1018 7

热门文章

最新文章