生产环境缺陷管理

简介: git-poison基于go-git实现分布式bug追踪,通过“投毒-解毒-银针”机制,自动化管理多分支开发中的bug修复与发布卡点,降低协同成本,避免漏修漏发,提升发布安全性与效率。

前言

在一个大型团队中,bug协同管理是一件复杂的事情,发布经理要追版本bug,运维同学要评估bug影响范围,开发同学要在多个开发分支同时修复同一个bug,很容易出现bug漏提交、漏确认等生产安全问题。

本团队也出现过一起不同分支漏提交bugfix导致的一起P1故障(最高等级),该bug在生产环境进行hotfix时,漏掉了少量集群导致该二次故障。举个相似的例子,某品牌汽车发现潜在安全隐患进行召回,但却遗漏了某个小地区,偏偏在遗漏的地区,发生了安全事故导致有人员伤亡。

我们基于go-git开发实现了通用化的git-poison,通过分布式源码管理bug追溯、查询,可复制性高,适用于所有git仓库,与分支模式和代码仓库无关。bug管理不依赖人与人之间沟通协调,降低了认知负担。

Bug为什么重复翻车

任何软件都会有bug。即使再全面的测试,再细致的代码review,也不能保证线上的每一段代码都bug-free。但是已经识别到的bug,为什么还会重复翻车呢?归根结底,git多分支开发模式会导致bug扩散。引入bug和发现和修复bug的时间异步,口头沟通确认bug易疏漏。

很多人看到前言的故障可能会认为,这只是“不小心”犯了个错误,下次再“细心”一点儿就好了。其实不是的,在百人规模的团队中,人犯错可以说是必然的。

图1 (Baron Schwartz "Approaching the Unacceptable Workload Boundary")

上图形象展示了人与人之间的协同成本。10人团队的整体协同一次的沟通次数为90/2=45次,那么100人则是4650次。这个次数只是相互协同一次,大多数场景下,由于bug和bugfix是随时出现的,再加上人的失误 (沟通中忘了某些bug等),所以一般来讲,一个发布流程至少需要前后同步三次,沟通成本巨大。所以谁能打包票,在这个流程中不犯错?只有通过工具来进行自动化管理才能保证从“不做错”到“做不错”。

几个典型翻车场景

场景一:未修复bug代码上线

图2 发布同学多方协同

微服务化盛行,系统各服务独立发布,发布owner也会选择本组比较有经验的同学,但仍旧不能避免开发与发布之间的信息割裂。该类问题有很多种表现形态,举例来说:

  • 我是一名开发:我发现了一个新Bug,我得赶紧告诉版本发布负责人,叫停本次版本发布;
  • 我是一名测试:我发现了一个新Bug,我需要评估线上该Bug受影响的范围,安排hotfix;
  • 我是一名运维:我在调查一个生产问题,我不知道这是不是一个已知问题,我去问问开发;

版本发布同学,作为整个流程的核心人物,在这个繁琐的流程中极易犯错。

场景二:已修复bug但没修全

还有一类情况,就是针对分支开发的代码漏合。

图3 分支开发漏合bugfix

某一分支发现bug时(参考上图branch master),第一时间一定会在master分支上进行修复。然而此时带有该bug的branch1就被遗漏了。该问题在多个LTS(Long Time Support)分支的开发模式中尤其严重,每个版本都需要发布同学double check有无重点bugfix漏合。

场景三:已修复bug线上漏发

这就是前言提到的场景。人为疏漏。

漏发确实是非常大的问题,但是也有客观原因。面对千万级别的生产环境,数十年多个生产版本共存,面临这样的组合爆炸,人肉确认hotfix发布范围不遗漏确实是很大的挑战。

图4 线上多种环境组合,发布同学易遗漏

如上图,假如所有集群按物理ENV分为六组(线上生产远大于此),例子里本次发布bugfix的同学就是漏掉了ENV5的集群,已知bug也刚好在这个分组的集群中再次出现了。

发布卡点Bug信息

因此,应当存在全局角色来维护bug相关信息。任何角色、任何时间、任何地点都能够编辑和访问。

无论是devops模式,还是传统的专职“研发,测试,运维”模式,都会面临负责发布的负责人,单点评估整个版本的bugfix以及确认未修复bug,充当“人肉pipeline”。作为一个分布式系统开发人员,能否使用分布式工具来解决分布式沟通协同的老大难问题呢?

git-poison的出现,不仅能实时在“开发,测试,发布”间同步所有已知问题,还能参与发布卡点,确认当前版本的未修复bug信息,节约人力成本。

图5 多方调用git-poison满足需求

如何使用

git-poison基于go-git的分布式源码管理,实现bug的追溯、查询和反馈,灵活&&可复制性高,适用于任何开发模式以及任意代码仓库。另外,git-poison不依赖人与人之间的协作沟通,减少认知负担沟通成本,自动化精准召回bug中毒域,实现poison commit发布阻塞。

图6 git-poison 投毒/解药/银针 (yum install git-poison)

对于开发者,只需要记住一件事:抓紧投毒!

回到前言说到的P1故障,使用git-poison就能简单有效避免“重复翻车”的场景:

  • 值班线上出现故障,定位问题。使用git-posion投毒
  • 开发bug修复,使用git-poison解毒
  • 发布hotfix发布完毕后,使用git-poison银针,确保线上所有带bug的版本,都带有本次的bugfix。

如何实现

每一次投毒/解毒,git-poison的poisons远程git仓库中都会生成/更新一条对应记录。不同代码仓库对应不同分支,隔离不同源的posions信息。

{  "poison":"1q234tre5467gcs7yui8ew13",  "cure":"9875jgbsw32gtx6djri8sofi0h",  "comment":"[to #12345678] service iohang",  "editor":"Iris",}

check-commit则应用了git原生强大的history tree管理。

图7 红色QW为毒药commit下的git历史DAG

如上图,假如我们当前在release分支上,上次的发布commit是B,当前的发布commit是X。通过 git rev-list 可以直接获取到整个DAG(Directed Acyclic Graph)。结合git-poison的记录,若红色的Q和W是没有解药的poison,则git-poison会阻塞本次发布,返回投毒同学以及对应bug的记录文档信息。

假如我们在Dev分支上查询L是否“有毒”,则git-poison会返回“healthy”。

最佳实践

发布减负

图8 发布平台使用git-poison进行卡点

引入git-poison后,在团队的发布流程中,发布平台会调用git-poison自动导入本次版本发布的“Bugfix列表”和“未修复Bug列表”,便于发布经理评估该版本的质量风险,无需再口头追个确认。包括本次发布修复的问题列表,以及是否有未解决的bug。

Before

After

1.发布同学git log两次发布之间所有的commit

2.发布同学筛选本模块相关commit

3.拉群一一询问对应patch owner

1.发布平台自动调用git-poison导入未修复bug,

发布经理评估发布风险

风险观测

图9 git-poison 联动线上风险展示

运维平台可以集成git-poison来检查线上部署的服务版本是否存在中毒情况。线上风险一目了然。尤其是发现一个新bug后,值班同学可以立即投毒,并通过该页面获取该bug影响的范围。

Before

After

1.值班同学发现bug

2.值班同学去代码仓库查找引入bug的commit对应时间

3.获取线上所有模板找到对应的build版本

4.人肉排查该bug是否在对应版本中

1.值班同学发现bug

2.使用git-poison进行投毒查看影响范围

结语

目前git-poison已经在公司内部开源,团队已经实现、使用并集成到发布平台管理Bug一年多。开发同学本地使用顺畅,学习成本低,发布流程中多次有效阻塞带bug的版本,并为定位bug影响范围提供极大便利。

目录
相关文章
lyL
|
2月前
|
存储 缓存 监控
EFC&CTO:缓存引发数据不一致问题排查与深度解析
EFC客户端在适配CTO测试时发现数据不一致问题,经排查为分布式缓存中版本号回退导致读取旧数据,进而污染pagecache并写坏文件系统。通过维护递增版本号修复,最终问题解决。
lyL
70 0
EFC&CTO:缓存引发数据不一致问题排查与深度解析
lyL
|
2月前
|
项目管理 开发者
业务架构图
本文介绍了业务架构图的核心概念与绘制方法,涵盖业务定义、架构分层(组织层、基础能力层、业务能力层、业务应用层)、模块划分与功能分解,并强调通过分层、分模块、分功能三步法实现业务的抽象与结构化表达,提升客户理解与开发效率。
lyL
171 0
业务架构图
lyL
|
2月前
|
存储 安全 Java
Java泛型类型擦除以及类型擦除带来的问题
Java泛型在编译时会进行类型擦除,所有泛型信息被移除,替换为原始类型(如Object或限定类型)。这导致List<String>和List<Integer>在运行时均为List,引发类型安全、多态冲突等问题。编译器通过桥方法、自动强转等机制解决部分问题,但静态成员不能使用类的泛型参数,且基本类型需用包装类。
lyL
73 0
|
程序员 C++ Windows
Windows C++ 启动子进程并绑定子进程,主进程结束关闭后自动结束关闭子进程
在Windows平台上主进程启动子进程,并使主进程结束关闭后自动结束关闭子进程
529 0
|
Web App开发 分布式计算 小程序
什么是云计算,云计算在未来有什么作用?
简要介绍云计算及云计算作用
8467 0
|
10月前
|
人工智能 光互联 数据中心
横跨半世纪的光通讯巅峰盛会OFC落幕,阿里云在全球光通信顶会OFC2025上发表多个创新成果和报告
​2025年3月,全球光通讯领域最具标杆意义的年度盛会——OFC(光纤通信学术会议暨展览会)迎来其50周年里程碑,在美国加州旧金山盛大开幕。来自全球83个国家和地区,约17000名专家、学者、企业和政府人员齐聚美国,共同融入这场知识与思想的盛会。
|
5月前
|
人工智能 缓存 运维
|
8月前
|
人工智能 自然语言处理 搜索推荐
蚂蚁百宝箱体验:如何快速创建“旅游小助手”AI智能体
蚂蚁百宝箱作为站式智能体应用开发平台,致力于为AI开发者提供**简单、高效、快捷**的智能体创作体验。作为业内领先的AI应用开发平台,开发者可以根据自身的个性化需求,基于各式各样的大模型来创建一个属于自己的智能体应用。
722 41
|
Kubernetes 网络协议 Nacos
OpenAI 宕机思考丨Kubernetes 复杂度带来的服务发现系统的风险和应对措施
Kubernetes 体系基于 DNS 的服务发现为开发者提供了很大的便利,但其高度复杂的架构往往带来更高的稳定性风险。以 Nacos 为代表的独立服务发现系统架构简单,在 Kubernetes 中选择独立服务发现系统可以帮助增强业务可靠性、可伸缩性、性能及可维护性,对于规模大、增长快、稳定性要求高的业务来说是一个较理想的服务发现方案。希望大家都能找到适合自己业务的服务发现系统。
503 87
|
11月前
|
人工智能 文字识别 计算机视觉
HarmonyOS NEXT AI基础视觉服务-文字识别
本案例展示了一款基于AI基础视觉服务的文字识别应用,通过调用设备相机拍摄照片并识别图片中的文字内容。主要实现步骤包括:1) 导入所需功能模块;2) 调用相机获取图片URI;3) 将图片转换为可识别的像素图;4) 配置视觉识别参数并执行文字识别;5) 构建界面组件,实现拍照与结果显示交互。核心要点涵盖相机权限、图像格式兼容及结构化识别结果处理,完整代码整合了各功能模块的调用流程,确保功能顺畅运行。