如何做好SQL质量监控

本文涉及的产品
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: SLS推出用户级SQL质量监控功能,集成于CloudLens for SLS,提供健康分、服务指标、运行明细、SQL Pattern分析及优化建议五大维度,帮助用户全面掌握SQL使用情况,识别异常、优化性能,提升日志分析效率与资源管理能力。

背景
Cloud Native
在 SLS 中,用户可以通过 SQL 对日志数据(结构化、半结构化、无结构化)进行查询和分析。随着用户对 SQL 使用程度的不断加深,越来越多的用户希望了解自己使用 SQL 分析时的服务反馈(如请求量、成功率、数据量等等),以便对数据和分析行为进行精细管理或优化治理。
“现在我这个 Project 的 SQL 并发是多少?”
“奇怪,我 SQL 请求并不多,为什么会有这么多 SQL 请求,是哪个业务线(Logstore)用的?”
“我想了解我在 SLS 中使用 SQL 分析的整体情况,请问有什么监控数据或日志可以查看?
这些都是来自 SLS 真实用户的声音,可以看出用户对于自身 SQL 分析行为的监控和质量管理有着较强的需求。
为了提升用户 SLS SQL 的使用体验,我们提供了用户级 SQL 质量监控功能,希望能够帮助用户直观、清晰地了解自身使用 SQL 的情况。
通过 CloudLens 开启使用
Cloud Native
我们将此功能集成于 CloudLens for SLS中,用户可以轻松开启该服务,并对 SQL 质量进行监控和管理。除此之外,CloudLens for SLS 还帮助您监控和管理所有 SLS 相关资源(包括采集接入、读写操作、作业、配额、SQL、计费等等),以提升您对日志服务资产的管理效率、快速了解其消耗情况。

服务开启后按照引导开通全局日志,数据同步可能需要一定时间(首次开启大约 10min),请耐心等待,随后在「报表中心 / SQL 质量监控」中即可查看完整 SQL 质量监控。

功能总览
Cloud Native
总体上,我们为用户提供了 5 个维度的 SQL 质量监控:
● SQL 健康分和使用报告主要展示用户整体使用 SQL 的健康度和总体情况(包含一些很有意思的指标)。
● SQL 服务指标主要描述用户使用 SQL 时的整体服务情况,以便用户对服务现状有整体了解。
● SQL 运行指标主要描述 SQL 内部运行时的指标,以便用户了解自身 SQL 的实际处理表现和吞吐。
● SQL Pattern主要刻画用户提交的 SQL 范式(根据 SLS 原生 sql parse 解析并去除参数差异),以便用户识别出具有相同特征的分析业务,做相关管理和监控。
● SQL 质量优化和建议主要描述 SQL 请求的服务质量,包括用户侧错误,给出相关建议,推荐用户进行优化改善。
关于指标的说明:
● 所有指标以分钟为粒度,根据以下 4 个基础字段(Category 除外)作为分组维度,聚合分析计算得出。
● 所有指标目前不包含 JDBC 接入和 ScheduledSQL 的流量请求。
● 所有指标为当前状态,随产品形态和系统发展,未来可能增减指标,以帮助用户更明确的反馈服务情况。
● 所有指标的解释权归 SLS 所有。
SQL 健康分和使用报告
Cloud Native
通过「SQL 健康分」,反馈用户使用 SLS SQL 服务的总体质量,进而驱动用户去做服务治理和质量优化。
UserStory:很多时候,用户在使用 SQL 的过程中,常常由于 AK 失效/授权过期/索引未建立 / SQL 语法错误等各种客观原因,而发起了大量的无效 SQL 请求,不仅占用了 SQL 请求并发配额,对于用户自身服务器资源也是无效的消耗。通过 SQL 健康分,用户可以一目了然了解自己使用 SLS SQL 的健康情况,并进行针对的优化或者治理。

同时,我们提供了一份用户最近的「SQL 使用报告」。在这里,用户可以从全局视角看到当前账户下使用 SQL 的活跃 Project、活跃 Logstore、SQL 请求量、常用请求代理、SQL 整体表现(包括延时、数据量、数据行数、返回行数、预估并发量等)

SQL 服务指标
Cloud Native
通过「SQL 服务指标」,用户可以了解自己使用 SQL 时更详细的服务质量,包括每分钟的请求 PV 数、平均延时、请求代理分布以及延时四分位的分布水平。
通过这些时序图的趋势展示,用户可以非常直观地了解自己在哪些时段出现过 SQL 请求量飙升或延时毛刺,以便辅助分析业务问题。将时间线拉长到 1 天,用户也可以了解到自己业务高峰一般处在 1 天中的什么时刻,延时毛刺是否与请求量相关等等。

SQL 运行明细指标
Cloud Native
通过「SQL 运行明细指标」,用户可以更进一步地了解当前 SQL 执行情况,包括并发请求(预估)、各阶段平均延时、每分钟的处理数据量和处理行数,以及细化到 Logstore 的 SQL 热力分布情况等等。

关于并发请求(预估)和各阶段平均延时的说明
首先,回答大家一个问题:为什么要有 SQL 并发控制?
SLS SQL 执行涉及到分布式计算,计算过程消耗较多算力资源,而我们的服务是面向云上多租用户的,为了保证资源的公平使用,我们为每个租户设置了合理的并发额度。
每个用户会配置 1 个并发队列和 1 个排队队列,当用户提交一条 SQL 时,会进行并发控制,若并发队列有空余,则直接运行;若并发队列满,则排队等待;若排队队列再满,则并发超限报错。

UserStory:有些用户当并发请求过高时,查询延时会有明显增高,这又是怎么回事呢?
其实,了解了上面的并发控制模型,就不难理解这一点:当一条 SQL 提交时,如果并发队列满,该 SQL 将在排队队列中等待,直到并发队列中最短的一条 SQL 执行完才能腾出空位来,这个时间间隔称为“QueuedTime(排队时间)”,所以,当出现排队时,SQL 端到端的总延时可能会增高,这其中包含了队列中等待在途 Query 完成的排队时间。

因此,为了让大家在日常使用过程中,更合理地使用并发,以及遇到并发超限时进行合理地优化处理,我们提供了并发请求(预估)和各阶段平均延时指标以供用户参考。
SQL Pattern 分析
Cloud Native
我们提供「SQL Pattern分析」视图,将 SQL 中的变量参数进行了泛化,提炼出 SQL 语义特征,用户可以据此了解哪些特征 SQL 请求占比特多、执行特慢、处理量特大等等。
UserStory:很多时候,用户提交的 SQL 是通过程序化方式以模板+参数的方式渲染生成最终 SQL 语句,有可能多条不同的 SQL 对应的其实是同一个业务,为了让用户能更加洞悉业务特征,快速识别出存在问题或异常的业务 SQL。
String sql = String.format("* | SELECT sum(price) from log where category = %s", category_id);// request sql to sls...

质量优化和建议
Cloud Native
用户可以通过「质量优化和建议」了解到自己使用 SQL 的整体请求成功/失败占比、错误码的分布,我们还会给出具体的优化建议。
UserStory:很多时候,由于企业组织结构不同,在 SLS 上的资源可能分布在不同的团队,有可能运维部门负责资源的创建(如 Project/Logstore/索引),而数据部门负责数据的使用(如发起 SQL 请求),业务上的快速迭代和变化常常会导致某个 Logstore 已不存在、AK 失效、权限不足等,而数据部门却可能还一直在持续地发起大量的 SQL 请求,造成客户大量无效资源的消耗。这种情况下,各部门往往缺乏一个全局视角了解资源的整体使用情况和错误占比,我们通过优化建议可以让用户从全局视角了解到最需要优化和治理的方面,帮助提效。

相关文章
|
Web App开发 自然语言处理 API
巧记Elasticsearch常用DSL语法
记知识先记轮廓,关于DSL语法的轮廓,记住以下3句话即可:1.索引、文档和查询。2.Match、Term和Bool。3.还有翻页和聚合
巧记Elasticsearch常用DSL语法
|
存储 Prometheus Kubernetes
「译文」Prometheus 中的 relabel 是如何工作的?
「译文」Prometheus 中的 relabel 是如何工作的?
|
2月前
|
缓存 NoSQL Java
微服务高频面试题
本课程系统讲解微服务架构核心知识,涵盖SpringBoot与SpringCloud应用、Nacos注册与配置中心、OpenFeign远程调用、Sentinel熔断限流、Gateway网关鉴权、分布式事务Seata、RabbitMQ消息队列、Elasticsearch搜索及Redis缓存等技术,结合实战场景解析服务治理、数据同步与高并发处理方案。
|
16天前
|
存储 人工智能 数据库
2026 AI Agent 搭建师职业全景指南:从技术基石到商业闭环
2026年,AI职业迎来范式变革,“AI Agent搭建师”取代提示词工程师,成为集架构设计、系统集成与智能协同于一体的“数字流程总设计师”。他们构建具备感知-思考-行动闭环的智能体,推动企业从“聊天机器人”迈向“行动中心”与“数字员工团队”。通过异构模型路由、多智能体编排、MCP工具协议与GraphRAG记忆系统等核心技术,实现业务流程自动化与决策智能化。该职业融合技术、业务与战略,人才缺口巨大,薪酬领先,被誉为AI时代的“黄金职业”,并持续向AI架构师与伦理治理等方向演进。
440 1
|
5月前
|
运维 监控 Linux
Linux系统设置与理解主机名(hostname)的重要性
综上所述,合理配置和维护主机名不仅是Linux系统管理的基础,而且对于网络服务的稳定运行以及
402 13
|
存储 API C语言
|
运维 Kubernetes 网络协议
运维之道:从新手到专家的成长之路
【10月更文挑战第21天】 本文旨在探讨运维领域的成长路径,通过分享个人经历和行业见解,为读者提供一条从入门到精通的清晰路线图。我们将从基础技能的学习开始,逐步深入到高级技巧的应用,最终达到专业水平的提升。文章强调了持续学习和实践的重要性,并鼓励读者在面对挑战时保持积极态度,不断探索未知领域。
430 6
|
机器学习/深度学习 存储 算法
关于深度学习量化的操作
0. 简介 深度学习中做量化提升运行速度是最常用的方法,尤其是大模型这类非常吃GPU显存的方法。一般是高精度浮点数表示的网络权值以及激活值用低精度(例如8比特定点)来近似表示达到模型轻量化,加速深度学习模型推理,目前8比特推理已经比较成熟。比如int8量化,就是让原来32bit存储的数字映射到8bit存储。int8范围是[-128,127], uint8范围是[0,255]。 使用低精度的模型推理的优点:1. 模型存储主要是每个层的权值,量化后模型占用空间小,32比特可以缩减至8比特,并且激活值用8比特后,减小了内存的访问带宽需求。2:单位时间内处理定点运算指令比浮点数运算指令多。 1.
382 12
|
设计模式 存储 缓存
初探DDD
基于学习《殷浩详解DDD:领域层设计规范》后的动手实践,简单总结,以及个人理解
|
搜索推荐 安全 网络协议
邮件批量发送:智能筛选与高效
群发邮件可通过电子邮件营销工具、自建服务器、第三方服务或营销自动化平台实现。电子邮件营销工具如Zoho Campaigns、Mailchimp等简化了邮件设计与发送流程,并提供数据分析;自建邮件服务器则需技术支撑,但能高度定制;第三方服务如Amazon SES、SendGrid易于使用;营销自动化平台如HubSpot整合多渠道营销。企业应根据技术能力、预算和需求选择合适方法,注重内容个性化和相关性,优化策略与流程。
262 0