Python | 网格搜索参数优化的LGBM+SHAP可解释性分析回归预测及可视化算法

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: 本教程详解Python中LGBM模型的网格搜索调参、SHAP可解释性分析及可视化,涵盖数据处理、模型训练、评估指标保存与多种图表绘制,助力科研论文可解释性提升,代码完整且注释清晰,适合初学者学习与复现。

立个flag,这是未来一段时间打算做的Python教程,敬请关注。

1 数据及应用领域

2 算法理论基础

3 SHAP 理论基础

上述三条目录的基本原理已在前置推文中做过详细介绍,需要学习了解的请转到如下链接:

https://mp.weixin.qq.com/s/S_ZeZRlWjXXaILUQWfKAXQ

✔ 程序能画非常直观的可视化

本程序SHAP带的图包括:

这些图都是发论文神器。

论文价值:可解释性直接提升一档

SCI 论文里 reviewer 最爱问:

  • “模型的物理解释是什么?”
  • “为什么这个特征如此重要?”
  • “模型是不是只是黑盒?”

你用 SHAP,一张 beeswarm plot 就能回答所有问题。

无论你是:XGBoost、CatBoost、LightGBM、Random Forest、Gradient Boosting、NGBoost、决策树,SHAP 都能解释。

4 其他图示

🎲 一、特征值相关性热图

特征值相关性热图用于展示各特征之间的相关强弱,通过颜色深浅体现正负相关关系,帮助快速识别冗余特征、强相关特征及可能影响模型稳定性的变量,为后续特征选择和建模提供参考。

🎲 二、散点密度图

散点密度图通过颜色或亮度反映点的聚集程度,用于展示大量样本的分布特征。相比普通散点图,它能更直观地呈现高密度区域、异常点及整体趋势,常用于回归分析与模型评估。以下为训练集和测试集出图效果。

🎲 三、网格搜索参数优化算法及示意图

🌟 1、网格搜索是什么?

一句话概括:

网格搜索就是把所有设定好的超参数组合排成一个“网格”,逐个尝试,通过评估结果找到表现最佳的那一组参数。

就像在一个二维或多维坐标空间里,把所有候选参数都排列出来,然后把每个点都跑一遍,最终选出模型表现最优的位置。

🌟 2、它的核心原则:全面、稳定、逐点验证

网格搜索的理念非常直观:

  • 先定义每个参数可能的取值范围
  • 再把这些取值组合成一个完整网格
  • 然后对每个组合进行模型训练与验证
  • 最后选择最优结果对应的参数

这是一种系统化、无遗漏的搜索方式。它不会遗漏,也不会偏向,它用最直接的方式告诉你:  哪个参数组合最适合你的模型。

🌟 3、为什么网格搜索常被用作调参基础流程?

网格搜索的价值主要体现在几个方面:

✔ 1. 结构清晰、可控性强

你可以完全决定参数候选集,调参过程完全透明。

✔ 2. 适用于小范围、精细化的参数探索

特别适合探索学习率、树深、正则项等关键参数的小步长变化。

✔ 3. 方便结合交叉验证

与 Cross-Validation 结合后,能够获得稳定、可靠的参数评估结果。

✔ 4. 结果可复现、可追踪

每个组合都被尝试过,调参过程完整记录,适合科研工作。

🌟 4、典型应用场景

网格搜索广泛应用于:

  • XGBoost / LightGBM / CatBoost 的关键参数精调
  • SVM、随机森林、岭回归等模型的标准调参
  • 小规模搜索空间的系统验证
  • 科研论文中要求严谨、可复现的实验设计

在你的任务里,网格搜索非常适合用于关键参数的局部精调,确保模型在最佳点附近充分探索。

🌟 5. 程序能画非常直观的可视化

该图展示 GridSearchCV 调参过程中各超参数与 RMSE 的相关性重要性,其中 learning_rate、reg_alpha 和 n_estimators 影响最明显,可用于识别关键参数并指导后续调参方向。

5 代码包含具体内容一览

我的代码程序中将参数最优值输出到当前目录的best_params.txt文本中,

并将训练集和测试集的精度评估指标保存到 metrics. Mat 矩阵中。共两行,第一行代表训练集的,第二行代表测试集的;共 7 个精度评估指标,分别代表 R, R2, ME, MAE, MAPE, RMSE 以及样本数量。

保存的regression_result.mat数据中分别保存了名字为Y_train、y_pred_train、y_test、y_pred_test的矩阵向量。

同样的针对大家各自的数据训练出的模型结构也保存在model.json中,方便再一次调用。

调用的程序我在程序中注释了,如下

# 加载模型
# model.load_model("model.json")

主程序如下,其中从1-10,每一步都有详细的注释,要获取完整程序,请转下文代码获取


# =========================================================
# 主程序
# =========================================================
def main():
   print("=== 1. 读取数据 ===")
   data = pd.read_excel("data.xlsx")
   X = data.iloc[:, :10].values
   y = data.iloc[:, 10].values
   feature_names = list(data.columns[:10])

   print("=== 2. 划分训练与测试 ===")
   X_train, X_test, y_train, y_test = train_test_split(
       X, y, test_size=0.2, random_state=42
   )

   print("=== 3. 归一化 ===")
   scaler_X = MinMaxScaler()
   scaler_y = MinMaxScaler()

   X_train_norm = scaler_X.fit_transform(X_train)
   X_test_norm = scaler_X.transform(X_test)
   y_train_norm = scaler_y.fit_transform(y_train.reshape(-1, 1)).ravel()

   print("=== 4. 模型训练 ===")
   model = train_model(X_train_norm, y_train_norm)

   print("=== 5. 预测(反归一化到原始尺度) ===")
   y_pred_train_norm = model.predict(X_train_norm)
   y_pred_test_norm = model.predict(X_test_norm)

   y_pred_train = scaler_y.inverse_transform(
       y_pred_train_norm.reshape(-1, 1)
   ).ravel()
   y_pred_test = scaler_y.inverse_transform(
       y_pred_test_norm.reshape(-1, 1)
   ).ravel()

   print("=== 6. 模型评估 ===")
   metrics_train = evaluate_model(y_train, y_pred_train)
   metrics_test = evaluate_model(y_test, y_pred_test)

   print("\n训练集评估指标:")
   for k, v in metrics_train.items():
       print(f"  {k}: {v:.4f}" if isinstance(v, float) else f"  {k}: {v}")

   print("\n测试集评估指标:")
   for k, v in metrics_test.items():
       print(f"  {k}: {v:.4f}" if isinstance(v, float) else f"  {k}: {v}")

   print("=== 7. 保存结果到 MAT 文件 ===")
   result_dict = {
       "y_train": y_train.astype(float),
       "y_pred_train": y_pred_train.astype(float),
       "y_test": y_test.astype(float),
       "y_pred_test": y_pred_test.astype(float),
   }
   savemat("regression_result.mat", result_dict)
   print("已保存 regression_result.mat")

   # 按指标顺序排列
   metrics_matrix = np.array([
       [metrics_train['R'],     metrics_test['R']],
       [metrics_train['R2'],    metrics_test['R2']],
       [metrics_train['ME'],    metrics_test['ME']],
       [metrics_train['MAE'],   metrics_test['MAE']],
       [metrics_train['MAPE'],  metrics_test['MAPE']],
       [metrics_train['RMSE'],  metrics_test['RMSE']],
       [metrics_train['样本数'], metrics_test['样本数']]
   ], dtype=float)
   savemat("metrics.mat", {"metrics": metrics_matrix})
   print("已保存 metrics.mat(矩阵大小 7×2)")

   print("=== 8. SHAP 分析 ===")
   X_combined = np.vstack([X_train_norm, X_test_norm])
   X_df = pd.DataFrame(X_combined, columns=feature_names)
   # shap_results = shap_analysis(model, X_combined, feature_names)
   plot_shap_dependence(model, X_combined, feature_names, X_df)

   print("=== 9. 密度散点图 ===")
   plot_density_scatter(
       y_test, y_pred_test, save_path="scatter_density_test.png"
   )
   plot_density_scatter(
       y_train, y_pred_train, save_path="scatter_density_train.png"
   )

   print("=== 10. 相关性热图 ===")
   correlation_heatmap(data, feature_names)

   print("=== 完成!===")

if __name__ == "__main__":
   main()

6 代码获取

Python | 网格搜索参数优化的LGBM+SHAP可解释性分析回归预测及可视化算法

https://mbd.pub/o/bread/YZWZl5ZqaQ==

新手小白/python 初学者请先根据如下链接教程配置环境,只需要根据我的教程即可,不需要安装 Python 及 pycharm 等软件。如有其他问题可加微信沟通。

Anaconda 安装教程(保姆级超详解)【附安装包+环境玩转指南】

https://mp.weixin.qq.com/s/uRI31yf-NjZTPY5rTXz4eA

目录
相关文章
|
2天前
|
云安全 人工智能 自然语言处理
|
9天前
|
数据采集 人工智能 自然语言处理
Meta SAM3开源:让图像分割,听懂你的话
Meta发布并开源SAM 3,首个支持文本或视觉提示的统一图像视频分割模型,可精准分割“红色条纹伞”等开放词汇概念,覆盖400万独特概念,性能达人类水平75%–80%,推动视觉分割新突破。
665 56
Meta SAM3开源:让图像分割,听懂你的话
|
6天前
|
搜索推荐 编译器 Linux
一个可用于企业开发及通用跨平台的Makefile文件
一款适用于企业级开发的通用跨平台Makefile,支持C/C++混合编译、多目标输出(可执行文件、静态/动态库)、Release/Debug版本管理。配置简洁,仅需修改带`MF_CONFIGURE_`前缀的变量,支持脚本化配置与子Makefile管理,具备完善日志、错误提示和跨平台兼容性,附详细文档与示例,便于学习与集成。
320 116
|
6天前
|
人工智能 Java API
Java 正式进入 Agentic AI 时代:Spring AI Alibaba 1.1 发布背后的技术演进
Spring AI Alibaba 1.1 正式发布,提供极简方式构建企业级AI智能体。基于ReactAgent核心,支持多智能体协作、上下文工程与生产级管控,助力开发者快速打造可靠、可扩展的智能应用。
|
21天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
AgentEvolver:让智能体系统学会「自我进化」
AgentEvolver 是一个自进化智能体系统,通过自我任务生成、经验导航与反思归因三大机制,推动AI从“被动执行”迈向“主动学习”。它显著提升强化学习效率,在更少参数下实现更强性能,助力智能体持续自我迭代。开源地址:https://github.com/modelscope/AgentEvolver
448 32
|
5天前
|
弹性计算 人工智能 Cloud Native
阿里云无门槛和有门槛优惠券解析:学生券,满减券,补贴券等优惠券领取与使用介绍
为了回馈用户与助力更多用户节省上云成本,阿里云会经常推出各种优惠券相关的活动,包括无门槛优惠券和有门槛优惠券。本文将详细介绍阿里云无门槛优惠券的领取与使用方式,同时也会概述几种常见的有门槛优惠券,帮助用户更好地利用这些优惠,降低云服务的成本。
278 133

热门文章

最新文章