停车场空车位检测数据集(3000张图片已划分)[目标检测]

简介: 在城市交通管理与智慧停车建设快速发展的当下,如何高效、精准地识别停车场空车位已成为智慧城市重要课题。为了支持研究者和工程团队训练高性能停车检测模型,我们构建了停车场空车位检测数据集,专为目标检测任务优化设计。

停车场空车位检测数据集(3000张图片已划分)[目标检测]

在城市交通管理与智慧停车建设快速发展的当下,如何高效、精准地识别停车场空车位已成为智慧城市重要课题。为了支持研究者和工程团队训练高性能停车检测模型,我们构建了停车场空车位检测数据集,专为目标检测任务优化设计。

本数据集共包含 3000 张图像,覆盖多场景、多角度、多时间段真实停车场情况,为 AI 模型提供充分的学习样本。


在这里插入图片描述

数据集下载

链接:https://pan.baidu.com/s/1pXDsQypPP3-skV-bRjtaKQ?pwd=qrhm
提取码:qrhm 复制这段内容后打开百度网盘手机App,操作更方便哦

停车场空车位检测数据集 本数据集用于训练和验证停车场空车位检测模型,共包含 3000 张图像,覆盖多种光照、天气和视角场景。
任务目标:识别停车场中的已停车辆与空车位
类别数量(nc):2
0: 已停车辆
1: 空车位

背景

随着机动车数量持续上涨,停车难已成为城市治理中的突出矛盾。典型痛点包括:

  • 🚗 车位资源不透明:驾驶员无法快速判断目的地是否有空位
  • 🕒 寻找车位耗时长:造成道路拥堵、油耗浪费和时间成本增加
  • 🎯 停车场管理效率低:传统人工巡查或地磁感应方式成本高、易失效
  • 📉 数据缺失:缺乏对空车位数量和利用率的实时统计能力

为解决这些挑战,智慧停车系统逐渐引入 AI 视觉技术,通过摄像头实时识别停车位状态,从而实现:

  • 车流引导
  • 空车位导航
  • 资源最大化利用
  • 自动化计费与监控

📌 在系统构建中,空车位识别准确性是核心能力,但训练一个效果可靠的模型需要大量高质量的数据。尤其是:

  • 夜间光照差
  • 阴影、雨天、地面反光导致误判
  • 车辆形态多样、大小差异明显
  • 停车线模糊、遮挡、倾斜视角等困难场景

因此,本数据集旨在提供真实环境采集样本,提升模型对复杂场景的适应能力,助力 AI 停车检测系统落地应用。


在这里插入图片描述
在这里插入图片描述

数据集概述

属性 内容
图像总数 3000 张
任务类型 目标检测(Object Detection)
标注格式 YOLO 标注格式
类别数量 2
数据划分 Train / Valid / Test

类别定义:

类别 ID 类别名称 说明
0 已停车辆 停在车位内或占用停车区域的车辆
1 空车位 可停放车辆的位置

路径结构如下:

main/datasets
├── train/images
├── train/labels
├── valid/images
├── valid/labels
├── test/images
└── test/labels

数据划分遵循机器视觉训练标准:

  • 训练集 Train:约 70%
  • 验证集 Valid:约 20%
  • 测试集 Test:约 10%

确保模型训练与泛化性能稳定可靠。


在这里插入图片描述
在这里插入图片描述

数据集详情

为了提升模型适应性,图像采集覆盖多种实际环境因素:

📍 场景多样性

  • 地上停车场 / 地下车库
  • 商场、写字楼、医院、小区等多业态场景
  • 密集停车区、分散停车区、多层停车结构

📷 摄像机视角差异

  • 俯视摄像头
  • 倾斜监控视角
  • 远距离与近距离拍摄覆盖

🌗 光照与天气影响

  • 正午强光、阴影重叠
  • 夜间低照度场景(含强光灯与噪点)
  • 阴天、雨天路面反光干扰

🅿️ 停车位标识差异

  • 白色、黄色、虚线、磨损线条
  • 多车型尺寸兼容
  • 包含残障车位、电动桩车位

🎯 复杂遮挡场景纳入标注

  • 植被遮挡、其他车辆部分覆盖
  • 行人经过场景
  • 停车位部分挡住但仍判断为可用

以上多维度采样,确保模型能在真实部署中泛化良好。


在这里插入图片描述

适用场景

该数据集适用于多种 AI 应用方向:

场景 使用示例
智慧停车系统 实时车位识别与空位导航
智慧交通管理 统计停车资源数据,缓解拥堵
云端停车分析平台 历史车位占用率分析与预测
智能车场设备 摄像头+边缘设备实时检测
自动驾驶停车场景 自主泊车空位识别

此外,还可用于科研方向,例如:

  • 小目标识别优化
  • 遮挡场景重识别算法
  • 多任务融合:车位分割 + 车位状态分类
  • 低照度视觉增强与鲁棒性提升

目标检测

本数据集默认支持 YOLOv5/YOLOv8 等目标检测框架,可直接启用训练。

示例(YOLOv8):

yolo train model=yolov8s.pt data=main/datasets/data.yaml epochs=200 imgsz=640 batch=16

验证 & 推理:

yolo val model=runs/train/exp/weights/best.pt data=main/datasets/data.yaml
yolo predict model=runs/train/exp/weights/best.pt source=parking.mp4

为实现生产部署,可进一步:

  • 将模型量化与剪枝,以适配边缘设备(如 NVIDIA Jetson / 海康摄像头)
  • 联合车位线检测进行几何关系增强,降低误识别
  • 融合 Kalman Filter/SORT 进行车位状态跟踪

在这里插入图片描述

结语

停车场空车位检测是智慧城市构建的重要一环。相比传统传感器方案,AI 视觉方案具有:

✔ 成本可控
✔ 部署灵活
✔ 信息丰富(提供车辆类型、占位区域等更多数据)
✔ 可快速规模化升级

本数据集提供扎实的数据基础,使研究者与企业可快速构建并优化停车检测模型,助力:

  • 提升停车效率
  • 降低管理成本
  • 减少道路拥堵
  • 推动城市交通系统全链路智能化

未来我们将继续:

  • 扩张至 10,000+ 张图像的数据规模
  • 增加夜间监控、雨雪天气等困难样本
  • 加入停车位语义分割、多模态标注等能力

如你有模型训练支持、工程部署合作或数据补充需求,欢迎随时交流,共同推动智慧停车技术落地,让 AI 让城市更通畅 🚀

相关文章
|
1天前
|
云安全 人工智能 安全
AI被攻击怎么办?
阿里云提供 AI 全栈安全能力,其中对网络攻击的主动识别、智能阻断与快速响应构成其核心防线,依托原生安全防护为客户筑牢免疫屏障。
|
11天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
5天前
|
安全 Java Android开发
深度解析 Android 崩溃捕获原理及从崩溃到归因的闭环实践
崩溃堆栈全是 a.b.c?Native 错误查不到行号?本文详解 Android 崩溃采集全链路原理,教你如何把“天书”变“说明书”。RUM SDK 已支持一键接入。
464 198
|
3天前
|
人工智能 移动开发 自然语言处理
2025最新HTML静态网页制作工具推荐:10款免费在线生成器小白也能5分钟上手
晓猛团队精选2025年10款真正免费、无需编程的在线HTML建站工具,涵盖AI生成、拖拽编辑、设计稿转代码等多种类型,均支持浏览器直接使用、快速出图与文件导出,特别适合零基础用户快速搭建个人网站、落地页或企业官网。
530 157
|
4天前
|
数据采集 消息中间件 人工智能
跨系统数据搬运的全方位解析,包括定义、痛点、技术、方法及智能体解决方案
跨系统数据搬运打通企业数据孤岛,实现CRM、ERP等系统高效互通。伴随数字化转型,全球市场规模超150亿美元,中国年增速达30%。本文详解其定义、痛点、技术原理、主流方法及智能体新范式,结合实在Agent等案例,揭示从数据割裂到智能流通的实践路径,助力企业降本增效,释放数据价值。
|
9天前
|
人工智能 自然语言处理 安全
国内主流Agent工具功能全维度对比:从技术内核到场景落地,一篇读懂所有选择
2024年全球AI Agent市场规模达52.9亿美元,预计2030年将增长至471亿美元,亚太地区增速领先。国内Agent工具呈现“百花齐放”格局,涵盖政务、金融、电商等多场景。本文深入解析实在智能实在Agent等主流产品,在技术架构、任务规划、多模态交互、工具集成等方面进行全维度对比,结合市场反馈与行业趋势,为企业及个人用户提供科学选型指南,助力高效落地AI智能体应用。
|
存储 人工智能 监控
从代码生成到自主决策:打造一个Coding驱动的“自我编程”Agent
本文介绍了一种基于LLM的“自我编程”Agent系统,通过代码驱动实现复杂逻辑。该Agent以Python为执行引擎,结合Py4j实现Java与Python交互,支持多工具调用、记忆分层与上下文工程,具备感知、认知、表达、自我评估等能力模块,目标是打造可进化的“1.5线”智能助手。
551 43

热门文章

最新文章