基于YOLOv8的粉尘污染检测识别|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

简介: 随着工业化的快速发展,粉尘污染成为了环境监测和工业安全中必须关注的问题。传统的粉尘检测方法往往依赖人工采样和实验室分析,周期长、成本高。基于计算机视觉的自动化粉尘检测系统能够实时、准确地监控环境,从而极大提高安全和管理效率。本项目基于最新的YOLOv8算法,实现了粉尘污染检测与识别,并提供完整源码、数据集和可视化界面,实现开箱即用。

基于YOLOv8的粉尘污染检测识别|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

随着工业化的快速发展,粉尘污染成为了环境监测和工业安全中必须关注的问题。传统的粉尘检测方法往往依赖人工采样和实验室分析,周期长、成本高。基于计算机视觉的自动化粉尘检测系统能够实时、准确地监控环境,从而极大提高安全和管理效率。本项目基于最新的YOLOv8算法,实现了粉尘污染检测与识别,并提供完整源码、数据集和可视化界面,实现开箱即用。

该系统具有以下核心功能:

  1. 实时粉尘检测:通过摄像头或视频流实时识别空气中的粉尘颗粒。
  2. 图像标注与训练:支持自定义数据集标注,训练YOLOv8模型。
  3. PyQt5可视化界面:一键加载视频或图片,实现检测结果可视化。
  4. 权重文件直接调用:无需二次训练即可运行预训练模型进行检测。
  5. 完整训练流程:包括数据准备、模型训练、验证与导出。
  6. 部署与导出:支持导出为ONNX或TorchScript模型,便于边缘端部署。

项目摘要

本项目基于YOLOv8目标检测框架,结合工业场景下的粉尘监测需求,开发了一套完整的检测系统。项目亮点包括:

  • 全流程开源:从数据采集、标注、训练到部署,均提供完整代码和教程。
  • 轻量化模型:YOLOv8模型经过优化,适合在GPU甚至CPU端实时运行。
  • 可视化友好:PyQt5界面操作简单,一键检测,结果直观展示。
  • 适应多场景:可应用于工厂车间、建筑工地、矿山等环境的粉尘监测。

前言

空气质量监测一直是工业安全管理的重要环节。粉尘污染不仅影响生产环境,更会对工人健康造成长期威胁。传统人工检测方法效率低,难以满足现代工业生产的需求。而基于深度学习的视觉检测技术,尤其是YOLO系列算法,能够在保证高精度的同时,实现实时检测,为工业安全提供了可靠解决方案。

YOLOv8作为YOLO系列最新版本,具有更高的检测精度、更快的推理速度和更灵活的训练接口,非常适合用于粉尘检测这类小目标、密集目标识别场景。本项目将YOLOv8与PyQt5前端结合,实现了从数据采集到可视化展示的完整解决方案。

一、软件核心功能介绍及效果演示

本系统基于YOLOv8深度学习目标检测框架,针对工业环境下粉尘颗粒的实时识别需求,提供了一套从数据采集、模型训练到可视化展示的完整解决方案。核心功能包括:实时粉尘检测与标注、训练自定义数据集、PyQt5可视化界面操作、一键加载预训练权重以及检测结果统计分析。通过加载摄像头或视频流,系统能够在画面中准确标出粉尘颗粒位置,并显示置信度,实现了高效、直观的效果演示,便于用户快速掌握检测结果并进行进一步分析与应用。

二、软件效果演示

为了直观展示本系统基于 YOLOv8 模型的检测能力,我们设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。

(1)单图片检测演示

用户点击“选择图片”,即可加载本地图像并执行检测:

image-20250907222808895


(2)多文件夹图片检测演示

用户可选择包含多张图像的文件夹,系统会批量检测并生成结果图。

image-20250907222852961


(3)视频检测演示

支持上传视频文件,系统会逐帧处理并生成目标检测结果,可选保存输出视频:

image-20250907223202452


(4)摄像头检测演示

实时检测是系统中的核心应用之一,系统可直接调用摄像头进行检测。由于原理和视频检测相同,就不重复演示了。


(5)保存图片与视频检测结果

用户可通过按钮勾选是否保存检测结果,所有检测图像自动加框标注并保存至指定文件夹,支持后续数据分析与复审。

image-20250907222940921

三、模型的训练、评估与推理

YOLOv8是Ultralytics公司发布的新一代目标检测模型,采用更轻量的架构、更先进的损失函数(如CIoU、TaskAlignedAssigner)与Anchor-Free策略,在COCO等数据集上表现优异。
其核心优势如下:

  • 高速推理,适合实时检测任务
  • 支持Anchor-Free检测
  • 支持可扩展的Backbone和Neck结构
  • 原生支持ONNX导出与部署

3.1 YOLOv8的基本原理

YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:

  • 速度快:推理速度提升明显;
  • 准确率高:支持 Anchor-Free 架构;
  • 支持分类/检测/分割/姿态多任务
  • 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。

YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。

image-20250526165954475

YOLOv8原理图如下:

image-20250526170118103

3.2 数据集准备与训练

采用 YOLO 格式的数据集结构如下:

dataset/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

每张图像有对应的 .txt 文件,内容格式为:

4 0.5096721233576642 0.352838390077821 0.3947600423357664 0.31825755058365757

分类包括(可自定义):

image-20250907223638624

3.3. 训练结果评估

训练完成后,将在 runs/detect/train 目录生成结果文件,包括:

  • results.png:损失曲线和 mAP 曲线;
  • weights/best.pt:最佳模型权重;
  • confusion_matrix.png:混淆矩阵分析图。

若 mAP@0.5 达到 90% 以上,即可用于部署。

在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:

image-20250907223707673

3.4检测结果识别

使用 PyTorch 推理接口加载模型:

import cv2
from ultralytics import YOLO
import torch
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel

# 加入可信模型结构
safe_globals().add(DetectionModel)

# 加载模型并推理
model = YOLO('runs/detect/train/weights/best.pt')
results = model('test.jpg', save=True, conf=0.25)

# 获取保存后的图像路径
# 默认保存到 runs/detect/predict/ 目录
save_path = results[0].save_dir / results[0].path.name

# 使用 OpenCV 加载并显示图像
img = cv2.imread(str(save_path))
cv2.imshow('Detection Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

预测结果包含类别、置信度、边框坐标等信息。

image-20250907223750289

四.YOLOV8+YOLOUI完整源码打包

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见【4.2 完整源码下载】:

4.1 项目开箱即用

作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。

运行项目只需输入下面命令。

python main.py

读者也可自行配置训练集,或使用打包好的数据集直接训练。

自行训练项目只需输入下面命令。

yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001

4.2 完整源码

至项目实录视频下方获取:https://www.bilibili.com/video/BV1SwHyzLENA/

image-20250801135823301

包含:

📦完整项目源码

📦 预训练模型权重

🗂️ 数据集地址(含标注脚本)

总结

基于YOLOv8的粉尘污染检测系统,通过深度学习与计算机视觉技术,实现了工业环境中粉尘颗粒的高效、实时检测。系统不仅提供完整的数据集、训练代码和预训练权重,还集成了PyQt5可视化界面,使用户能够方便地进行图像或视频检测、实时监控和结果统计。该项目兼顾精度与效率,支持快速部署,为工业安全管理和环境监测提供了可靠、开箱即用的解决方案。

相关文章
|
27天前
|
机器学习/深度学习 监控 算法
基于YOLOv8的人体多姿态行为识别系统(站立、摔倒、坐姿、深蹲与跑步)|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8深度学习模型,实现了一个多姿态行为识别系统,能够精准地识别站立、摔倒、坐姿、深蹲和跑步等行为。项目的核心内容包括完整的YOLOv8训练代码、标注数据集、预训练权重文件、部署教程和PyQt5界面,提供了一套从数据收集到最终部署的完整解决方案。
基于YOLOv8的人体多姿态行为识别系统(站立、摔倒、坐姿、深蹲与跑步)|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
1月前
|
人工智能 运维 安全
|
1月前
|
JavaScript 前端开发 算法
Vue 3:下一代前端框架的革命性进化
Vue 3:下一代前端框架的革命性进化
289 103
|
4月前
|
机器学习/深度学习 监控 自动驾驶
基于YOLOv8的交通标识及设施识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8与PyQt5,打造交通标识及设施智能识别系统。支持图像、视频、摄像头输入,可检测人行横道、限速标志、停车标志和交通信号灯。提供完整源码、数据集、权重文件与训练教程,开箱即用,适合多场景应用。系统具备高精度、实时性强、部署便捷等优势,助力智能交通与自动驾驶发展。
基于YOLOv8的交通标识及设施识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
29天前
|
机器学习/深度学习 监控 数据可视化
YOLOv8+PyQt5睡岗状态智能检测平台搭建 | 睡觉行为自动监控系统【开箱即用】
在本项目中,我们利用YOLOv8模型进行睡觉和睡岗状态检测。项目的核心功能是通过训练YOLOv8来识别不同的状态(如“睡觉”和“睡岗”)。同时,系统还提供了完整的PyQt5界面,用户可以在界面上查看实时检测结果,并且系统支持开箱即用,可以直接进行部署。
|
19天前
|
人工智能 自然语言处理 NoSQL
超越基础提示:用RAG为你的大模型注入“新鲜记忆”
超越基础提示:用RAG为你的大模型注入“新鲜记忆”
209 101
|
机器学习/深度学习 人工智能 监控
基于YOLOv8的多种水果种类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8与PyQt5开发,实现多种水果种类的高效识别。支持图像、视频及摄像头输入,具备批量检测、实时识别与高精度标注功能,模型轻量且部署简便,适用于边缘设备。配套完整源码、数据集与训练教程,开箱即用,适合学习与产业应用。
基于YOLOv8的多种水果种类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
1月前
|
存储 人工智能 运维
AI 网关代理 RAG 检索:Dify 轻松对接外部知识库的新实践
Higress AI 网关通过提供关键桥梁作用,支持 Dify 应用便捷对接业界成熟的 RAG 引擎。通过 AI 网关将 Dify 的高效编排能力与专业 RAG 引擎的检索效能结合,企业可在保留现有 Dify 应用资产的同时,有效规避其内置 RAG 的局限,显著提升知识驱动型 AI 应用的生产环境表现。
864 76
|
1月前
|
机器学习/深度学习 运维 监控
运维日志里的“读心术”:深度学习能看出啥?
运维日志里的“读心术”:深度学习能看出啥?
154 74
|
1月前
|
机器学习/深度学习 边缘计算 监控
基于YOLOv8的鸟类智能识别系统设计与实现
鸟类是生态系统中非常重要的物种,对生物多样性保护和生态研究具有重要意义。 传统的鸟类识别需要人工观察与分类,不仅效率低,而且容易受限于专家经验。 随着深度学习的发展,基于 YOLOv8 的鸟类检测系统 能够在自然场景中高效、准确地完成多物种识别,为生态监测、科研和教育提供有力工具。
基于YOLOv8的鸟类智能识别系统设计与实现