基于FPGA的8PSK+帧同步系统verilog开发,包含testbench,高斯信道,误码统计,可设置SNR

简介: 本项目基于FPGA实现8PSK调制解调系统,包含仿真验证与Verilog核心代码。通过Vivado 2019.2进行功能仿真,验证在不同信噪比(SNR=10dB/30dB)下的通信性能。系统包括调制、信道传输、解调及帧同步等模块,适用于数字通信应用。

1.算法仿真效果
vivado2019.2仿真结果如下(完整代码运行后无水印):

设置SNR=10db

62e8fe71e6b81e2e544ea2ae0cc43ad9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
ef7f28f7ab2a7d2efb1aeaaeba256b1a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

设置SNR=30db

347aca11db0995d307bd4b17d8cc125a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
d78e46a006dc7e2de84b428fd5f5ca6f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
随着通信技术的不断发展,相位调制技术因其高频谱效率和抗干扰能力而广泛应用于无线通信系统中。其中,8PSK(8相位相移键控)作为一种高阶调制方式,具有更高的频谱效率和更强的抗干扰能力,因此备受关注。然而,8PSK调制解调的实现复杂度较高,需要高效的数字信号处理技术。现场可编程门阵列(FPGA)作为一种可编程逻辑器件,具有高度的灵活性和并行处理能力,非常适合实现复杂的数字信号处理算法。

2.1 8PSK调制原理
8PSK调制是一种相位调制方式,其基本原理是通过改变载波的相位来传递信息。在8PSK中,一个符号周期内的相位变化有8种可能的状态,分别对应3个比特的信息。因此,8PSK调制可以看作是一种将3个比特映射到一个符号的映射方式。具体地,假设输入的比特序列为b2b1b0,则对应的8PSK符号可以表示为:

    S(t)=Acos(2πfct+θk) (1)

    其中,A是载波的振幅,fc是载波的频率,θk是第k个符号的相位,k=0,1,...,7。θk的取值由输入的比特序列b2b1b0决定,具体的映射关系如表1所示。

9c474f65bf9126721c5d9a309f21f038_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.2 帧同步
在数字通信中,信息通常是以帧为单位进行组织和传输的。帧同步的目的是确定每一帧的起始位置,以便接收端能够正确地解调出每帧中的数据。

   设发送的帧结构为:帧同步码 + 信息码元序列 。帧同步码是具有特定规律的码序列,用于接收端识别帧的起始。

   帧同步的过程就是在接收序列中寻找与帧同步码匹配的位置,一旦找到匹配位置,就确定了帧的起始位置,后续的码元就可以按照帧结构进行正确的划分和处理。

3.Verilog核心程序````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2024/08/05 03:30:02
// Design Name:
// Module Name: TOPS_8PSK
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module TOPS_8PSK(
input i_clk,
input i_rst,
input signed[7:0]i_SNR,
input[1:0]i_en,
input i_dat,
output [2:0]o_ISET,
output signed[15:0]o_I8psk,
output signed[15:0]o_Q8psk,
output signed[15:0]o_Ifir_T,
output signed[15:0]o_Qfir_T,
output signed[31:0]o_mod_T,
output signed[15:0]o_Nmod_T,

output signed[31:0]o_modc_R,
output signed[31:0]o_mods_R,
output signed[31:0]o_Ifir_R,
output signed[31:0]o_Qfir_R,
output [2:0]o_wbits,
output o_bits,
output [1:0]o_bits_head,
output [7:0]o_peak,
output o_en_data,
output o_en_pn,
output o_frame_start,
output signed[31:0]o_error_num,
output signed[31:0]o_total_num
);

reg[9:0]cnt;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
cnt <= 10'd0;
end
else begin
if(cnt == 79)
cnt <= 10'd0;
else
cnt <= cnt+10'd1;
end
end
reg dat_clk;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
dat_clk <= 1'd0;
end
else begin
if(cnt == 39)
dat_clk <= 1'd1;
else
dat_clk <= 1'd0;
end
end

T8PSK T8PSKU(
.i_clk (dat_clk),
.i_clksample(i_clk),
.i_rst (i_rst),
.i_en (i_en),
.i_dat (i_dat),
.o_ISET (o_ISET),
.o_clk_3div(),
.o_I8psk(o_I8psk),
.o_Q8psk(o_Q8psk),
.o_Ifir (o_Ifir_T),
.o_Qfir (o_Qfir_T),
.o_cos (),
.o_sin (),
.o_modc (),
.o_mods (),
.o_mod (o_mod_T)
);

//加入信道
awgns awgns_u(
.i_clk(i_clk),
.i_rst(i_rst),
.i_SNR(i_SNR), //这个地方可以设置信噪比,数值大小从-10~50,
.i_din(o_mod_T[28:13]),
.o_noise(),
.o_dout(o_Nmod_T)
);

//8PSK解调
R8PSK R8SKU(
.i_clk (dat_clk),
.i_clksample(i_clk),
.i_rst (i_rst),
.o_clk_3div(),
.i_med (o_Nmod_T),
.o_cos (),
.o_sin (),
.o_modc (o_modc_R),
.o_mods (o_mods_R),
.o_Ifir (o_Ifir_R),
.o_Qfir (o_Qfir_R),
.o_wbits(o_wbits),
.o_bits (o_bits),

.o_bits_head(o_bits_head),
.o_peak(o_peak),
.o_en_data(o_en_data),
.o_en_pn(o_en_pn),
.o_frame_start(o_frame_start)

);

Error_Chech Error_Chech_u1(
.i_clk(dat_clk),
.i_rst(i_rst),
.i_trans({~i_dat,1'b1}),
.i_en_data(o_en_data),
.i_rec({~o_bits,1'b1}),
.o_error_num(o_error_num),
.o_total_num(o_total_num)
);

endmodule

```

相关文章
|
5月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的2FSK+帧同步系统开发与硬件片内测试,包含高斯信道,误码统计,可设置SNR
本文基于FPGA实现2FSK+帧同步系统,采用Verilog开发,包含Testbench、高斯信道、误码统计及可设置SNR功能。硬件版本新增ILA在线数据采集与VIO在线SNR设置模块,验证调制解调过程。理论部分介绍FSK调制解调原理、功率谱特性及帧同步机制,代码实现FSK信号生成与处理,适合数字通信学习与实践。
201 1
|
2月前
|
监控 前端开发 Java
Vert.x 响应式应用框架技术详解与实践指南
本文档全面介绍 Vert.x 响应式应用框架的核心概念、架构设计和实践应用。作为一款基于 JVM 的高性能响应式编程工具包,Vert.x 提供了轻量级、非阻塞的编程模型,能够处理大量并发连接而保持低资源消耗。本文将深入探讨其事件驱动架构、响应式编程模式、集群机制以及微服务支持,帮助开发者构建高性能的响应式应用系统。
202 6
|
4月前
|
机器学习/深度学习 存储 算法
基于Qlearning强化学习的1DoF机械臂运动控制系统matlab仿真
本项目基于Q-learning强化学习算法,实现对单自由度机械臂的运动控制仿真。通过MATLAB 2022a平台验证算法效果,包含完整代码与仿真图像,具备良好可视化效果,适用于机器人控制与强化学习研究入门。
203 8
|
6月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2FSK+帧同步系统verilog开发,包含testbench,高斯信道,误码统计,可设置SNR
本项目基于Vivado2019.2实现FSK调制解调系统仿真,包含FSK调制/解调模块、AWGN信道模块、误码统计模块及帧同步模块等。通过设置SNR(如10dB、20dB)验证系统性能,并展示FSK调制解调过程。理论部分介绍频移键控(FSK)原理,包括相位连续与不连续特性、功率谱密度特点及其解调方法。Verilog核心程序实现调制、加噪、解调和误码计算功能,为数字通信系统设计提供参考。
221 35
|
5月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的BPSK+costas环实现,包含testbench,分析不同信噪比对costas环性能影响
本作品基于FPGA实现了BPSK调制解调通信系统与Costas环载波同步,使用Verilog语言完成设计并提供Testbench验证。相比之前版本,优化了环路滤波器以使Costas环收敛曲线接近理论值,并新增AWGN信道模块,支持调整SNR分析噪声对锁定性能的影响。通过Vivado2019.2仿真验证,结果准确无误。核心程序包含信号调制、加性高斯白噪声生成及解调部分,适用于学习载波同步与BPSK通信原理。Costas环结构包括本地振荡器、相位解调器、环路滤波器等组件,用于估计和追踪接收信号的相位偏移,实现精确解调。
174 4
|
7月前
|
算法 数据安全/隐私保护
基于16QAM的载波同步和定时同步性能仿真,采用四倍采样,包括Costas环和gardner环
本内容主要介绍了基于MATLAB的算法仿真及其涉及的理论知识。通过Matlab2022a仿真,展示了载波同步与位同步在通信系统中的实现效果,并提供无水印的完整代码运行结果。理论部分详细阐述了载波同步、位同步的概念,以及Costas环和Gardner定时误差算法的应用原理。核心程序包括鉴相器、环路滤波器处理及NCO相位生成等关键步骤,最终通过星座图对比验证了16QAM信号同步前后的性能改善。
291 30
|
8月前
|
机器学习/深度学习 算法 机器人
基于Qlearning强化学习的机器人路线规划matlab仿真
本内容展示了基于Q-learning强化学习算法的路径规划研究,包括MATLAB仿真效果、理论知识及核心代码。通过训练与测试,智能体在离散化网格环境中学习最优策略以规避障碍并到达目标。代码实现中采用epsilon-贪婪策略平衡探索与利用,并针对紧急情况设计特殊动作逻辑(如后退)。最终,Q-table收敛后可生成从起点到终点的最优路径,为机器人导航提供有效解决方案。
280 20
|
8月前
|
编解码 算法 数据安全/隐私保护
基于DVB-T的COFDM+16QAM+Viterbi编解码图传通信系统matlab仿真,包括载波定时同步,信道估计
本内容展示了基于DVB-T的COFDM+16QAM+Viterbi编解码通信链路的算法仿真与实现。通过Matlab2022a仿真,验证了系统性能(附无水印完整代码运行结果截图)。该系统结合COFDM、16QAM调制和Viterbi编解码技术,具备高效传输与抗多径衰落能力。核心程序涵盖加循环前缀、瑞利多径衰落信道模拟、符号同步、细定时估计等关键步骤,并实现了图像数据的二进制转换与RGB合并展示。理论部分详细解析了载波同步、定时同步及信道估计模块的功能与原理,为数字视频广播系统的开发提供了全面参考。
163 19
|
11月前
|
数据采集 算法 测试技术
【硬件测试】基于FPGA的QPSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的QPSK调制解调系统的硬件实现与仿真效果。系统包含测试平台(testbench)、高斯信道模块、误码率统计模块,支持不同SNR设置,并增加了ILA在线数据采集和VIO在线SNR设置功能。通过硬件测试验证了系统在不同信噪比下的性能,提供了详细的模块原理及Verilog代码示例。开发板使用说明和移植方法也一并给出,确保用户能顺利在不同平台上复现该系统。
445 15