熔断降级

简介: 本内容介绍了微服务中熔断降级的实现原理及Sentinel的底层机制。通过OpenFeign集成Sentinel,利用断路器统计异常和慢请求比例,触发熔断并降级,提升系统稳定性。还讲解了Sentinel使用的限流算法,如滑动窗口、令牌桶和漏桶算法,以应对不同场景下的流量控制需求。

熔断降级怎么实现的?

是Sentinel实现的熔断降级。

熔断和降级是两个概念:

微服务远程调用我们用的OpenFeign,它集成了Sentinel,在远程调用时由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。

降级是当遇到访问失败可以快速返回一些默认数据或者友好提示,避免长期等待服务提供方,提高系统的稳定性。

熔断降级结合后是当线路断开后直接走降级线路避免再次去请求失败线路。

断路器包括三个状态:

  • closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例、异常数。超过阈值则切换到open状态
  • open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态
  • half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。请求成功则切换到closed状态,请求失败则切换到open状态。

我们在开发中具体是这么做的:

  1. 首先在服务调用方配置sentinel,引入sentinel的依赖,配置sentinel的地址
  2. 在服务调用方配置开启feign使用sentinel。
  3. 在服务调用方编写feign接口并编写降级逻辑。
  4. 通过Sentinel控制台配置熔断策略,比如:异常比例、慢请求比例。

Sentinel实现熔断、限流的底层原理是什么?

Sentinel提供多种流量 控制算法 ,包括:滑动窗口算法、令牌桶算法以及漏桶算法等。

滑动窗口算法:

是一种用于统计单位时间内请求次数的方法,用来实现限流的目的。它将时间划分为多个小的时间窗口,并在每个小窗口内记录请求的数量。当新的请求到来时,系统会检查当前小窗口内的请求数量是否超过了预设的阈值,如果超过则拒绝请求。

令牌桶算法:

核心思想是一个桶中存储了一定数量的令牌,每当有请求到达时,就需要从桶中取出一个令牌。如果没有足够的令牌,则请求被延迟或拒绝。

以固定的速率生成令牌,存入令牌桶中,如果令牌桶满了以后,多余令牌丢弃。

请求进入后,必须先尝试从桶中获取令牌,获取到令牌后才可以被处理

如果令牌桶中没有令牌,则请求等待或丢弃

在使用令牌桶算法时,可能会存在突发流量导致系统过载,所以尽量不要将令牌上限设定到服务能承受的QPS上限。而是预留一定的波动空间,这样我们才能应对突发流量。

漏桶算法:

漏桶算法与令牌桶相似,但在设计上更适合应对并发波动较大的场景,以解决令牌桶中的问题。

就是请求到达后不是直接处理,而是先放入一个队列。而后以固定的速率从队列中取出并处理请求。之所以叫漏桶算法,就是把请求看做水,队列看做是一个漏了的桶。

相关文章
|
3月前
|
消息中间件 存储 缓存
再次了解kafka
Kafka通过offset机制解决消息重复消费问题,支持手动提交偏移量及唯一ID去重。它保证分区内的消息顺序消费,结合集群、副本与重平衡实现高可用。高性能设计包括顺序读写、分区、页缓存、零拷贝等。数据清理依赖保留时间或大小策略,点对点和发布订阅模式则通过消费者组实现。
|
Arthas 监控 Java
Java 诊断利器 Arthas使用
Java 诊断利器 Arthas使用
2855 0
|
2月前
|
jenkins Java 持续交付
使用 Jenkins 和 Spring Cloud 自动化微服务部署
随着单体应用逐渐被微服务架构取代,企业对快速发布、可扩展性和高可用性的需求日益增长。Jenkins 作为领先的持续集成与部署工具,结合 Spring Cloud 提供的云原生解决方案,能够有效简化微服务的开发、测试与部署流程。本文介绍了如何通过 Jenkins 实现微服务的自动化构建与部署,并结合 Spring Cloud 的配置管理、服务发现等功能,打造高效、稳定的微服务交付流程。
295 0
使用 Jenkins 和 Spring Cloud 自动化微服务部署
|
3月前
|
存储 人工智能 分布式计算
数据不用搬,AI直接炼!阿里云AnalyticDB AI数据湖仓一站式融合AI+BI
阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL版(以下简称ADB)诞生于高性能实时数仓时代,实现了PB级结构化数据的高效处理和分析。在前几年,为拥抱大数据的浪潮,ADB从传统数仓拓展到数据湖仓,支持Paimon/Iceberg/Delta Lake/Hudi湖格式,为开放的数据湖提供数据库级别的性能、可靠性和管理能力,从而更好地服务以SQL为核心的大规模数据处理和BI分析,奠定了坚实的湖仓一体基础。
|
3月前
|
消息中间件 NoSQL Java
延时实现
本节介绍了多种关闭过期订单的实现方案,包括定时任务、JDK延迟队列、Redis过期监听、Redisson延迟队列、RocketMQ延迟消息及RabbitMQ死信队列。各自优缺点明显,适用于不同业务场景,如定时任务适合小数据量,RocketMQ适合高并发解耦场景,而Redisson则使用简单且高效。选择时需综合考虑系统复杂度、数据量及可靠性要求。
|
3月前
|
负载均衡 网络性能优化
了解EMQ
EMQ通过MQTT协议的QoS机制保障消息可靠传输,支持QoS 0、1、2三个等级,分别实现消息最多一次、至少一次和恰好一次传递。对于延迟消息,EMQ X支持通过特殊主题前缀`$delayed/{DelayInterval}`实现延迟发布。点对点通信可通过不带群组的共享订阅(如`$queue/t/1`)实现,结合负载均衡策略如随机、轮询等,确保消息仅由一个订阅者接收;发布订阅模式则通过带群组的共享订阅(如`$share/组名称/t/1`)实现,确保每组一个订阅者收取消息。
|
域名解析 Kubernetes Java
图文详述Nacos配置中心使用:应用间配置共享、扩展配置文件加载优先级、新老版本差异
图文详述Nacos配置中心使用:应用间配置共享、扩展配置文件加载优先级、新老版本差异
6344 1
图文详述Nacos配置中心使用:应用间配置共享、扩展配置文件加载优先级、新老版本差异
|
3月前
|
负载均衡 Java Nacos
微服务架构中的服务注册与发现流程
本内容介绍了微服务架构中的服务注册与发现流程,包括服务注册中心(如Nacos)、服务提供者和调用者的角色分工。服务启动时自动注册信息至注册中心,调用者通过客户端负载均衡(如Spring Cloud Loadbalancer)选取服务实例进行远程调用。同时,内容还讲解了OpenFeign的工作原理,其作为HTTP客户端集成负载均衡,通过接口定义、代理生成、请求发送与结果解析,实现服务间的高效通信。
|
3月前
|
消息中间件 存储 安全
初始kafka
Kafka因高吞吐量被广泛使用,适合处理大量用户行为数据,支持实时推荐和数据展示。其优势包括提升响应速度、故障隔离、低耦合、流量削峰等。但也有架构复杂、依赖Broker等缺点。为避免消息丢失,可通过同步/异步发送、重试机制、设置ACK确认级别、副本机制及手动提交offset等方式保障消息可靠性。