基于YOLOv8的二维码QR码识别项目

简介: 本项目集成了 YOLOv8 二维码识别模型 与 PyQt5 图形界面工具,实现了包括图片、文件夹、视频与摄像头等多种输入方式的二维码自动检测功能。配套完整源码与训练流程说明,让你开箱即用、快速部署自己的二维码识别系统。适用于商场扫码识别、仓储物流标签、票务系统等多种实际应用场景。

基于YOLOv8的二维码QR码识别项目

项目摘要

本项目集成了 YOLOv8 二维码识别模型PyQt5 图形界面工具,实现了包括图片、文件夹、视频与摄像头等多种输入方式的二维码自动检测功能。配套完整源码与训练流程说明,让你开箱即用、快速部署自己的二维码识别系统。适用于商场扫码识别、仓储物流标签、票务系统等多种实际应用场景。

前言

随着二维码技术的广泛应用,从物流跟踪、产品溯源到电子支付、票务识别,二维码已经成为信息传递的重要媒介。然而在复杂环境中,如光照变化、二维码位置角度不一致、遮挡等因素下,传统二维码扫描器识别能力受限。

为此,借助深度学习中的目标检测技术,我们可以构建更稳定、鲁棒性更强的二维码识别系统。YOLOv8 作为新一代目标检测框架,在识别速度与精度之间实现了良好平衡,尤其适合二维码这类小目标检测任务。

本项目基于 YOLOv8 实现二维码识别,结合 PyQt5 图形界面,实现从图片、视频、摄像头多源输入的自动化检测,为开发者与企业提供可快速部署的轻量级方案。

一、软件核心功能介绍及效果演示

1.1 模型检测效果

项目使用 YOLOv8 训练自定义二维码数据集,能够精确检测图像中二维码的位置,并可导出边界框坐标。

核心性能指标

  • 检测精度:mAP@0.5 > 90%,能识别模糊、旋转、部分遮挡的二维码;
  • 检测速度:单图检测时间小于 50ms,支持实时摄像头检测;
  • 适配场景:商品标签、票据凭证、屏幕码、纸质码等多种二维码样式。

1.2 图形界面功能(PyQt5)

为提升项目可视化交互体验,集成 PyQt5 界面操作系统,功能如下:

功能模块 描述
图像检测 加载本地单张图片,显示检测结果
视频检测 支持本地视频文件逐帧检测二维码
摄像头检测 实时扫码,自动识别二维码位置
文件夹检测 可批量导入多个图片进行统一检测
结果保存 自动将检测结果图像与坐标信息保存

可用于门禁扫码系统、快递入库扫码等自动化检测场景。

二、软件效果演示

为了直观展示本系统基于 YOLOv8 模型的检测能力,我们设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。

(1)单图片检测演示

用户点击“选择图片”,即可加载本地图像并执行检测:

由于平台禁止发二维码,截图对二维码打码处理

image.png


(2)多文件夹图片检测演示

用户可选择包含多张图像的文件夹,系统会批量检测并生成结果图。

由于平台禁止发二维码,截图对二维码打码处理

image.png


(3)视频检测演示

支持上传视频文件,系统会逐帧处理并生成目标检测结果,可选保存输出视频:
由于平台禁止发二维码,截图对二维码打码处理
image.png


(4)摄像头检测演示

实时检测是系统中的核心应用之一,系统可直接调用摄像头进行检测。由于原理和视频检测相同,就不重复演示了。

image-20250724213609218


(5)保存图片与视频检测结果

用户可通过按钮勾选是否保存检测结果,所有检测图像自动加框标注并保存至指定文件夹,支持后续数据分析与复审。
由于平台禁止发二维码,截图对二维码打码处理
在这里插入图片描述

三、模型的训练、评估与推理

YOLOv8是Ultralytics公司发布的新一代目标检测模型,采用更轻量的架构、更先进的损失函数(如CIoU、TaskAlignedAssigner)与Anchor-Free策略,在COCO等数据集上表现优异。
其核心优势如下:

  • 高速推理,适合实时检测任务
  • 支持Anchor-Free检测
  • 支持可扩展的Backbone和Neck结构
  • 原生支持ONNX导出与部署

3.1 YOLOv8的基本原理

YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:

  • 速度快:推理速度提升明显;
  • 准确率高:支持 Anchor-Free 架构;
  • 支持分类/检测/分割/姿态多任务
  • 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。

YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。

image-20250526165954475

YOLOv8原理图如下:

image-20250526170118103

3.2 数据集准备与训练

采用 YOLO 格式的数据集结构如下:

dataset/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

每张图像有对应的 .txt 文件,内容格式为:

4 0.5096721233576642 0.352838390077821 0.3947600423357664 0.31825755058365757

分类包括(可自定义):
由于平台禁止发二维码,截图对二维码打码处理
在这里插入图片描述

3.3. 训练结果评估

训练完成后,将在 runs/detect/train 目录生成结果文件,包括:

  • results.png:损失曲线和 mAP 曲线;
  • weights/best.pt:最佳模型权重;
  • confusion_matrix.png:混淆矩阵分析图。

若 mAP@0.5 达到 90% 以上,即可用于部署。

在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:

image-20250724214013570

3.4检测结果识别

使用 PyTorch 推理接口加载模型:

import cv2
from ultralytics import YOLO
import torch
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel

# 加入可信模型结构
safe_globals().add(DetectionModel)

# 加载模型并推理
model = YOLO('runs/detect/train/weights/best.pt')
results = model('test.jpg', save=True, conf=0.25)

# 获取保存后的图像路径
# 默认保存到 runs/detect/predict/ 目录
save_path = results[0].save_dir / results[0].path.name

# 使用 OpenCV 加载并显示图像
img = cv2.imread(str(save_path))
cv2.imshow('Detection Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

预测结果包含类别、置信度、边框坐标等信息。
由于平台禁止发二维码,截图对二维码打码处理
在这里插入图片描述

四.YOLOV8+YOLOUI完整源码打包

4.1 项目开箱即用

作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。

运行项目只需输入下面命令。

python main.py

读者也可自行配置训练集,或使用打包好的数据集直接训练。

自行训练项目只需输入下面命令。

yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001

4.2 演示视频与源码

哔哩哔哩:https://www.bilibili.com/video/BV1w9bkzEEpG/

包含:

📦完整项目源码

📦 预训练模型权重

🗂️ 数据集地址(含标注脚本)

总结

本项目基于 YOLOv8 模型构建了一套高效、实用的二维码(QR码)自动识别系统,结合 PyQt5 图形界面,实现了图片、视频、摄像头等多输入方式的智能检测与可视化展示。无论是单张图像还是实时摄像头流,该系统都能快速精准地定位二维码区域,具有良好的适应性与扩展性。

项目优势总结如下:

  • 识别精度高:对旋转、遮挡、模糊二维码均有良好检测效果;
  • 运行效率高:轻量级 YOLOv8 实现快速推理,支持实时检测;
  • 操作简单易部署:图形界面友好,适合各类应用场景;
  • 源码开放可定制:完整训练流程+权重文件,支持二次开发。

无论你是做物流扫码、票务管理,还是门禁识别、商品标识采集,本系统都可作为一个高可用的二维码检测基础平台。

相关文章
|
计算机视觉
微信开源二维码检测识别-实时检测识别-opencv-Python
微信开源二维码检测识别-实时检测识别-opencv-Python
Beyond Compare 4密钥过期解决办法,超实用
Beyond Compare 4密钥过期解决办法,超实用
28081 1
|
4月前
|
机器学习/深度学习 监控 安全
基于YOLOv8的有无戴安全帽检测识别项目
本项目通过集成 YOLOv8 强大的目标检测能力与 PyQt5 的可视化界面,构建了一个 实用性强、易于部署、安全帽自动识别系统。无论是单张图片、视频监控,还是实时摄像头输入,该系统均可稳定工作,准确判断佩戴与未佩戴状态,极大减轻了传统人工巡查压力。
基于YOLOv8的有无戴安全帽检测识别项目
|
算法 数据库 计算机视觉
Dataset之COCO数据集:COCO数据集的简介、下载、使用方法之详细攻略
Dataset之COCO数据集:COCO数据集的简介、下载、使用方法之详细攻略
|
15天前
|
机器学习/深度学习 数据可视化 算法
基于YOLOv8的可回收瓶类垃圾快速识别与自动化分拣|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于 YOLOv8 构建了一套可回收瓶类垃圾的实时识别与自动化分拣系统,从数据集构建、模型训练到 PyQt5 可视化界面部署,形成了完整的工程化闭环。系统能够对多种瓶类废弃物进行高精度识别,并支持图片、视频、摄像头流等多场景实时处理,适用于垃圾回收站、环卫中转站、产线分拣系统等实际应用场景。
基于YOLOv8的可回收瓶类垃圾快速识别与自动化分拣|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
人工智能 算法 自动驾驶
使用OpenCV实现Halcon算法(2)形状匹配开源项目,shape_based_matching
使用OpenCV实现Halcon算法(2)形状匹配开源项目,shape_based_matching
5167 1
使用OpenCV实现Halcon算法(2)形状匹配开源项目,shape_based_matching
|
2月前
|
机器学习/深度学习 监控 算法
基于YOLOv8的人体多姿态行为识别系统(站立、摔倒、坐姿、深蹲与跑步)|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8深度学习模型,实现了一个多姿态行为识别系统,能够精准地识别站立、摔倒、坐姿、深蹲和跑步等行为。项目的核心内容包括完整的YOLOv8训练代码、标注数据集、预训练权重文件、部署教程和PyQt5界面,提供了一套从数据收集到最终部署的完整解决方案。
基于YOLOv8的人体多姿态行为识别系统(站立、摔倒、坐姿、深蹲与跑步)|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
5月前
|
机器学习/深度学习 安全 数据挖掘
基于YOLOv8的疲劳状态识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
这是一套基于YOLOv8的疲劳状态识别项目,包含完整源码、数据集、PyQt5界面及训练流程。系统可实时检测打哈欠、闭眼等疲劳行为,支持图片、视频、文件夹和摄像头多种输入方式,并自动保存检测结果。项目开箱即用,配有详细教程,适合快速部署。模型高效精准,界面友好易用,为疲劳驾驶预警提供技术保障。
286 114
基于YOLOv8的疲劳状态识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
机器学习/深度学习 人工智能 监控
基于YOLO的钢筋目标检测系统 | 钢筋计数识别与检测【完整源码+部署】
本项目围绕建筑行业中常见的钢筋识别与计数问题,基于先进的 YOLOv8 深度学习模型,构建了一个高效、稳定、可视化的智能检测系统。项目不仅实现了多场景支持(图片、视频、实时流)与目标自动计数,还通过 PyQt5 提供了友好的用户交互界面,极大地降低了使用门槛。结合完整的训练流程、可复用的数据集与权重,系统具备良好的扩展性与工程适配能力,适合教学科研、施工监控与智能运维等多类应用场景。未来,该系统也可进一步拓展为多类建材检测平台,为智能工地提供视觉 AI 支撑。
基于YOLO的钢筋目标检测系统 | 钢筋计数识别与检测【完整源码+部署】
|
4月前
|
机器学习/深度学习 边缘计算 算法
金属材料表面六种缺陷类型数据集 | 适用于YOLO等视觉检测模型(1800张图片已划分、已标注)
本数据集包含1800张金属表面缺陷图像,涵盖裂纹、夹杂、凹坑等6类缺陷,已标注并按train/val/test划分,支持YOLO、Faster R-CNN等模型训练,适用于工业质检与智能检测研究。
金属材料表面六种缺陷类型数据集 | 适用于YOLO等视觉检测模型(1800张图片已划分、已标注)