如何写好提示词Prompt?

简介: 本文由产品专家三桥君撰写,主要探讨如何写出高质量的Prompt,助力AI模型输出优质内容。文章从三个核心方面展开:理解大语言模型(LLM)、积累行业Know-how、提升逻辑表达清晰性。作者结合自身实践经验,强调在AI技术快速发展的背景下,提升Prompt能力的关键在于夯实基础,深入行业,精准表达。通过本文,读者将获得实用的Prompt优化思路,提升AI应用效率。

你好,我是 三桥君

📌本文介绍📌 >>



在深入应用大语言模型和其他AI技术时,我频繁地使用Prompt来指导模型输出。随着实践的增多,我逐渐意识到一个关键问题:如何在不断的使用中提升Prompt的撰写技巧,以更有效地引导AI产生高质量的回答。这一挑战成为了我在AI辅助工作流程中亟待解决的问题。那我是如何写好Prompt呢?

@三桥君_如何写好Prompt呢.png

第一,理解大语言模型(LLM)

要有效地构建提示词(prompt),首先需要对大语言模型(LLM)有深入的理解。不同的模型,如GPT、文心一言和智谱,即使面对相同的提示词,也会产生不同的输出结果。这种差异主要归因于它们在参数设置、训练语料库以及微调策略上的不同。这些差异导致了各个模型在交付使用时的能力各不相同。

在此,我们专注于探讨模型的推理能力。即使是使用相同的表述、方法论和语言,不同模型的输出结果也会大相径庭,这一点已通过对比测试得到验证。

因此,认识到每个模型的特点和能力是编写有效提示词的前提。在撰写提示词时,必须明确针对的是哪一个模型。例如,在使用Claude模型时,采用XML框架性的描述输入可能会取得显著效果,而在ChatGPT模型中使用XML和markdown则可能产生不同的结果。

第二,行业Know-how

在深入理解大语言模型(LLM)并掌握相关技巧后,我们发现市面上流行的所谓“高级操作”大致可以归纳为十条左右。这些技巧确实有助于提升prompt的效果,但它们仍然是在LLM框架内的应用。掌握这些技巧并不意味着就能自动写出高质量的prompt。

接下来,我们进入第二个关键要素:行业Know-how。这是指对特定领域、行业或细分场景的深入理解。例如,在制造业中,对整个工程链流程环节的深入了解,以及每个环节的关键注意点,是决定prompt质量的重要因素。行业专家与新手在撰写prompt时展现的深度差异,直接影响了输出的质量。

大语言模型的崛起引发了对人类工作未来的担忧,但真正的竞争力在于个人的行业Know-how。以UI设计师为例,仅仅掌握软件操作技能是不够的,真正的壁垒在于审美、设计理念和隐性知识的积累。

因此,即使掌握了相同的技巧和知识,不同人撰写的prompt仍会有明显差异。这种差异源于个人知识素养的不同层次,如同编程领域中,对递归和框架体系结构设计的理解,工匠与艺术家之间存在着本质的差异。

总结来说,行业Know-how是区分个人能力高低的关键因素,也是撰写高质量prompt的重要基础。个人的知识深度和素养层次决定了在运用LLM时的表现和成果。

第三,逻辑表达的清晰性

在与其他从事内容创作的朋友交流时,我们发现他们在撰写小红书笔记、制作抖音视频、编写文稿和口播稿等场景中,尽管遵循相同的标准化操作流程(SOP),最终的作品却各不相同。

通过对比分析三个人基于同一SOP撰写的prompt,我们注意到在逻辑表达层面存在差异。这种差异体现在个人是否能够将复杂信息清晰且无矛盾地表达出来。即使知识在脑海中已经形成,关键在于能否准确地传达这些信息。

在审查这些prompt时,我们发现了许多前后不一致的表达。例如,一个prompt可能一开始要求以轻松幽默的语气传达内容,而在后续的工作流程或其他SOP环节中,却又要求以严肃认真的态度对待每个字。这种前后矛盾的表达会显著降低输出质量,因为模型的注意力会因不一致而分散,导致信息传递的权重失衡。

因此,表达时的逻辑一致性至关重要。对于同一个语句,不同的人可能会使用不同的字数来表达,这要求我们认真思考并迭代,以区分是表达的丰富性还是不必要的冗余。清晰、一致的表达是确保prompt有效性和输出质量的关键。

总结

综合来看,撰写有效prompt的关键在于三个核心要素:对大语言模型(LLM)的深入理解、行业Know-how的积累以及逻辑表达的清晰性。这三个环节相辅相成,共同决定了prompt的质量。

在AI技术飞速发展的背景下,LLM模型的能力日新月异,每天都有新的更新和突破。然而,在这股技术浪潮中,我们应当认识到,虽然模型的能力在增强,但真正的挑战在于如何利用这些工具来辅助我们的表达和思考。

因此,三桥君的观点是,我们应该“往回退”,而不是盲目“往前进”。这意味着我们需要回归到基础,加强以下两个方面:

  • ​清晰表达:能否将我们所掌握的知识以清晰、简洁且直达核心的方式表达出来。
  • 行业Know-how:我们是否积累了足够的行业知识和经验。

要做到这一点,我们必须深刻理解自己的行业,深入探究我们感兴趣的领域或课题。只有将这两者结合起来,我们才能撰写出高质量的prompt,使LLM模型真正成为我们表达和创造的有力杠杆。

更多文章⭐ >>



欢迎关注✨三桥君✨获取更多AI产品经理与AI技术的分享,帮你入门AI领域,希望你为行业做出更大贡献。三桥君认为,人人都有机会成为AI专家👏👏👏读到这里,若文章对你有所启发,欢迎一键三连👍👍👍

目录
相关文章
|
2月前
|
人工智能 自然语言处理 供应链
AI技术落地方法论--从技术到生态的系统化落地
本文三桥君围绕AI技术落地难题,提出“点线面体”金字塔法则,系统解析从单点技术突破到行业生态构建的演进路径,并探讨技术支撑底座如何助力AI落地全过程。
157 29
|
2月前
|
人工智能 自然语言处理 测试技术
掌握这5个要点,选对Embedding模型助力RAG系统
三桥君深入解析RAG系统中的Embedding模型选择问题,探讨其在语义理解与检索中的关键作用,并结合任务需求、资源条件等提供实用选型建议。
718 0
|
2月前
|
XML 人工智能 测试技术
在AI应用中Prompt撰写重要却难掌握,‘理解模型与行业知识是关键’:提升迫在眉睫
本文三桥君探讨Prompt优化技巧对AI应用的重要性。内容涵盖理解大语言模型、行业Know-how及Prompt撰写方法,助力提升AI输出质量与应用效率。
193 58
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
三步法打造企业级AI产品,背后藏着怎样的落地方法论?
三桥君分享打造金融级AI产品的三步法:业务梳理找切入点、模型验证技术可行性、大规模验证落地效果。助力AI产品经理掌握核心能力,推动AI在信贷审批、投资管理等场景真正落地。
118 11
|
2月前
|
数据采集 存储 人工智能
AI 产品经理:技术架构图如何打通跨团队沟通壁垒?
本文三桥君深入解析AI产品经理如何绘制技术架构图,打通跨团队沟通壁垒。通过明确产品目标、分层设计与模块交互逻辑,帮助业务与技术团队高效协同,提升项目成功率。
148 8
|
2月前
|
数据采集 人工智能 文字识别
企业级AI项目未达预期:非结构化数据处理背后有何玄机?
企业级AI项目常因数据质量不佳未能达到预期,其中非结构化数据的处理是关键瓶颈。三桥君指出,PDF等非结构化文档包含大量表格、图表和公式等复杂元素,传统OCR技术难以有效提取。为解决这一难题,现代文档解析工具应具备多模态解析能力,能精确提取复杂元素并保持原始结构。文档质量直接影响AI模型效果,高质量结构化数据可显著提升模型性能。
66 1
|
2月前
|
数据采集 存储 人工智能
掌握这4个绘制技术架构图要点,提升AI产品经理跨团队沟通
三桥君深入解析AI产品经理必备技能——技术架构图的绘制方法。文章详细阐述了技术架构图的三大作用、绘制关键思考、方法论及案例分析,助力提升跨团队沟通效率与项目成功率。适合希望掌握技术逻辑、推动AI产品落地的产品经理阅读学习。
99 2
|
2月前
|
人工智能 自然语言处理 前端开发
大模型到AI Agent技术在进化,Function Calling将如何助力这场变革?
AI Agent正成为人工智能发展的新方向,其核心在于Function Calling技术,使AI从对话转向执行任务。本文产品专家三桥君探讨了AI的技术演进历程,从大语言模型到检索增强生成(RAG),再到具备Function Calling能力的AI Agent。Function Calling是AI Agent实现"会做事"的关键,预示着AI应用将迎来更广阔的发展前景。
174 0
|
2月前
|
人工智能 JSON 安全
一文了解智能体协作的2大核心技术:MCP与A2A
本文由产品专家三桥君介绍了AI智能体协作中的两项关键技术——MCP(模型上下文协议)和A2A(智能体协作协议)。MCP作为智能体的"操作工具箱",支持安全调用外部工具和资源;A2A则提供智能体间的"语言与组织能力",实现异构智能体的发现与协同。三桥君通过应用场景分析,展示了这两项技术在跨云协作、汽车维修服务链等领域的实践价值,并指出它们将推动智能体技术向更高效的协作方向发展。
296 0
|
2月前
|
人工智能 监控 API
MCP中台,究竟如何实现多模型、多渠道、多环境的统一管控?如何以MCP为核心设计AI应用架构?
本文产品专家三桥君探讨了以 MCP 为核心的 AI 应用架构设计,从统一接入、数据管理、服务编排到部署策略等维度,系统化分析了 AI 落地的关键环节。重点介绍了 API 网关的多终端适配、数据异步处理流程、LLM 服务的灰度发布与 Fallback 机制,以及 MCP Server 作为核心枢纽的调度功能。同时对比了公有云 API、私有化 GPU 和无服务器部署的适用场景,强调通过全链路监控与智能告警保障系统稳定性。该架构为企业高效整合 AI 能力提供了实践路径,平衡性能、成本与灵活性需求。
154 0