AI虫子种类识别数据集(近3000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】

简介: 本数据集包含近3000张已划分、标注的虫子图像,适用于YOLO系列模型的目标检测与分类任务。涵盖7类常见虫子,标注采用YOLO格式,结构清晰,适合农业智能化、小样本学习及边缘部署研究。数据来源多样,标注精准,助力AI虫害识别落地应用。

AI虫子种类识别数据集(近3000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】

数据集已划分为 traintestval 三个子集,共计近 3000张高清图像,每张图像都包含清晰的目标注释文件(YOLO格式),非常适合用于深度学习模型中的目标检测与分类任务,特别是YOLOv5、YOLOv8、YOLOv11等模型的训练与测试。

背景

在农业智能化与生态研究中,虫害识别一直是计算机视觉中的重要应用方向。不同种类的昆虫对作物、林木等有着截然不同的影响,及时准确识别虫子种类对于灾害预警、防治投放具有实际意义。

然而,公开可用的虫子图像数据集较为稀缺,尤其是面向小样本、边缘设备部署场景下的高质量虫子目标检测数据集更是凤毛麟角。因此,我们整理并清洗了一个近3000张图片的虫子识别数据集,涵盖多种常见虫子种类,标注标准规范,便于训练YOLO类目标检测算法。

数据集概述

数据集中每张图像都配有YOLO格式标注文件,标注内容包括虫子在图像中的类别编号和边界框(bounding box)坐标信息,适合用于目标检测训练任务。

dataset/
├── images/
│   ├── train/
│   ├── val/
│   └── test/
├── labels/
│   ├── train/
│   ├── val/
│   └── test/
AI 代码解读

该结构简单明晰,开箱即用,便于接入各种深度学习训练流程。

image-20250719152154716

image-20250719152213319

数据集详情

  • 图像总数:近3000张
  • 图像格式:JPG(部分为PNG)
  • 分辨率:大多在720p以上
  • 注释格式:YOLO格式 .txt,与图像同名
  • 类别数量:共计 7类常见虫子
  • 数据划分
    • train: 2089张
    • val: 447张
    • test: 448张

数据来源包括实地拍摄图像、公开虫子图像资源、手工清洗处理后的标注数据。所有标注均由专业人员完成,确保了高准确性和实用性。

所有类别均有丰富的样本图像,部分小样本类别适合用于数据增强、Few-shot等研究场景。

每个样本图像均包含虫体在图像中的 边界框(bounding box)坐标,并指明具体类别编号,完全遵循YOLO格式。例如某张图像的标注文件内容为:

3 0.512 0.439 0.187 0.274
AI 代码解读

表示第4类虫子在图像中的相对位置与大小。

train_batch2

train_batch0

适用场景

本数据集适用于多种计算机视觉研究与实际应用场景:

  • ✅ YOLOv5 / YOLOv8 / YOLOv11等目标检测模型训练
  • ✅ 多类虫子识别分类研究
  • ✅ 数据增强/迁移学习实验
  • ✅ 小样本学习 / 农业害虫识别模型开发
  • ✅ AIoT边缘设备部署测试

同时该数据集也适合用作学生科研课题、AI竞赛、学术研究中的标准基准测试集。

image-20250719153144863

结语

本数据集的发布旨在推动AI在生态虫害识别领域的落地应用,为模型提供高质量、结构清晰的数据资源。我们鼓励大家在遵守开源协议的前提下进行使用、训练与改进,也欢迎反馈优化建议。

后续我们也将提供基于该数据集的YOLO训练脚本PyTorch使用示例轻量化部署方案等配套资源,助力各类AI虫害识别项目高效落地。

数据集分享

通过网盘分享的文件:AI虫子种类识别数据集

链接: https://pan.baidu.com/s/1HC7vzPCHxr_WiYpt9sVgqQ?pwd=ru4c

目录
打赏
0
4
4
0
727
分享
相关文章
开发效率提升5倍!聚AI的LangFlow可视化全栈指南
LangFlow 是一个强大的可视化流程开发工具,支持全平台部署与多模型集成。通过 Docker 快速启动、本地开发或云服务部署,用户可灵活配置环境。其核心功能包括四大对象管理、可视化编程、自定义组件开发及与 LangChain 的深度整合,适用于客户服务、金融、医疗等多领域自动化流程构建。结合性能优化与版本管理,助力开发者高效实现企业级 AI 应用。
82 4
基于合合信息开源智能终端工具—Chaterm的实战指南【当运维遇上AI,一场效率革命正在发生】
在云计算和多平台运维日益复杂的今天,传统命令行工具正面临前所未有的挑战。工程师不仅要记忆成百上千条操作命令,还需在不同平台之间切换终端、脚本、权限和语法,操作效率与安全性常常难以兼顾。尤其在多云环境、远程办公、跨部门协作频繁的背景下,这些“低效、碎片化、易出错”的传统运维方式,已经严重阻碍了 IT 团队的创新能力和响应速度。 而就在这时,一款由合合信息推出的新型智能终端工具——Chaterm,正在悄然颠覆这一现状。它不仅是一款跨平台终端工具,更是业内率先引入 AI Agent 能力 的“会思考”的云资源管理助手。
137 6
基于YOLOv8的PCB缺陷检测识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8实现PCB缺陷检测,提供一站式解决方案。包含完整训练代码、标注数据集、预训练权重及PyQt5图形界面,支持图片、文件夹、视频和摄像头四种检测模式。项目开箱即用,适合科研、工业与毕业设计。核心功能涵盖模型训练、推理部署、结果保存等,检测类型包括缺孔、鼠咬缺口、开路、短路、飞线和杂铜。项目具备高性能检测、友好界面、灵活扩展及多输入源支持等优势,未来可优化模型轻量化、多尺度检测及报告生成等功能。
189 0
基于YOLOv8的PCB缺陷检测识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
基于YOLOv8的共享单车/自行车随意停放识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8模型与PyQt5界面,实现共享单车/自行车乱停放的智能检测。支持图片、视频、文件夹及摄像头输入,提供实时检测与结果保存功能。配套完整源码、训练数据集与权重文件,开箱即用,适合城市管理、交通执法等场景。项目包含详细训练教程与部署指南,助力AI学习者快速上手,推动智慧城市应用开发。
79 6
基于YOLOv8的共享单车/自行车随意停放识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
Dify开发者必看:如何破解MCP集成与Prompt迭代难题?
Dify 是一个面向AI时代的开源大语言模型(LLM)应用开发平台,致力于让复杂的人工智能应用构建变得简单高效,目前已在全球范围内形成显著影响力,其 GitHub 仓库 Star 数截至 2025 年 6 月已突破 100,000+,目前,Dify 已经成为 LLMOps 领域增长最快的开源项目之一。
这家公司使用 MCP,已向企业交付 1000 名数字员工
君润人力是一家科技驱动的人力资源服务公司,专注于为服务业提供一站式人力资源解决方案。通过AI与数字员工技术,公司在招聘、社保等领域实现自动化服务,提升效率并降低成本。同时,君润积极探索MCP协议和Higress网关技术,构建“数字灵工”平台,推动人服行业的智能化转型。
传统AI单点能力突出,为何面对复杂任务却远不及智能体?揭晓智能体的本质与核心优势
AI产品专家三桥君认为智能体作为新一代AI形态,正在重塑企业数字化运营模式。相比传统AI的单任务处理局限,智能体具备自主规划、工具调用、记忆存储和行动执行等核心能力,可完成从客户服务到订单处理的全流程业务自动化。作为企业IT技术演进的革命性突破,智能体通过智能编排微服务实现复杂流程调度,成为数字化转型的关键驱动力。未来,随着技术成熟,智能体将在更多领域释放降本增效价值,推动AI技术从单点突破走向系统化落地。
90 0
这个开源的「AI + 低代码」开发平台绝了,Gitee上斩获 9.2K Star!
VTJ.PRO 是一款 AI 驱动的低代码开发平台,深度融合 Vue3 技术栈,支持可视化设计与源码级编辑双向自由切换。通过 AI 智能生成、代码修复、跨端输出等能力,大幅提升前端开发效率,实现设计即代码、代码即设计的高效工作流,适用于原型开发、项目重构等多种场景。平台完全开源,提供在线沙盒与本地部署,助力开发者兼顾开发速度与代码自由度。
65 0
Google DeepMind发布MoR架构:50%参数超越传统Transformer,推理速度提升2倍
递归混合架构(MoR)通过自适应令牌级计算机制,在降低参数与计算开销的同时超越传统Transformer性能,显著提升推理效率与内存管理,为大模型发展提供新方向。
106 0
Google DeepMind发布MoR架构:50%参数超越传统Transformer,推理速度提升2倍
spring boot-MultipartFile 机制
本文详解了 Spring Boot 中 MultipartFile 的工作机制及大文件上传的解决方案。内容涵盖 MultipartFile 的解析流程、上传配置、Feign 上传大文件的内存问题及基于 RestTemplate 的流式上传实现。同时介绍了服务器端如何直接处理 application/octet-stream 类型的文件流,避免内存溢出问题。适合需要优化文件上传性能的开发者参考。
AI助理
登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问

你好,我是AI助理

可以解答问题、推荐解决方案等