DeepSeek-R1技术突破:纯RL训练竟能激发大模型"反思"能力?

简介: 仅通过强化学习(RL)训练,无需监督微调(SFT),就能让大模型自发产生带有反思的思维链(long CoT)。这一发现颠覆了此前行业对模型训练范式的认知。

开发|界面|引擎|交付|副驾——重写全栈法则:AI原生的倍速造应用流

来自全栈程序员 nine 的探索与实践,持续迭代中。

欢迎关注评论私信交流~

在AI领域,大模型的推理能力一直是研究热点。2025年初,DeepSeek团队发布的R1模型带来了一项令人惊讶的发现:仅通过强化学习(RL)训练,无需监督微调(SFT),就能让大模型自发产生带有反思的思维链(long CoT)。这一发现颠覆了此前行业对模型训练范式的认知。

从OpenAI o1到DeepSeek-R1的认知转变

最初,业界普遍认为像OpenAI o1这样的先进模型需要将推理时扩展(Inference/test-time scaling)和强化学习作为两个独立模块。这种认知源于一个基本假设:模型无法自发产生复杂思维链,必须通过显式引导

然而,DeepSeek-R1-Zero的实验结果打破了这一假设。研究团队仅通过以下简单设置:

image.png

就观察到了模型行为的惊人进化:

  • 随着训练步数增加,回答长度自然增长
  • 在某个训练阶段自发出现自我评估行为
  • 无需人工标注数据,就能产生结构化推理过程

DeepSeek-R1的双阶段训练策略

基于Zero的实验发现,DeepSeek团队设计了创新的两阶段训练方案:

image.png

关键创新点在于:

  1. 仅使用约1000条高质量冷启动数据进行初始SFT
  2. RL阶段采用纯规则奖励系统,避免奖励黑客问题
  3. 利用RL中间产物自动扩展训练数据

行业影响与未来展望

这一技术路径显示出几大优势:

  1. 训练效率提升:相比传统方法减少了对海量标注数据的依赖
  2. 成本降低:规则奖励系统比训练神经网络RM更经济
  3. 能力涌现:证明了模型可以通过RL自发发展出高级推理能力

目前,DeepSeek-R1在多项基准测试中表现优异,特别是在AIME测试中,通过多数投票策略使准确率从71%提升至86.7%,超越了OpenAI o1的同期版本。

这一发现不仅为大模型训练提供了新思路,也引发了关于"模型自发能力涌现"的深层思考。未来,结合RL与推理时扩展的混合方法,可能会成为大模型发展的主流方向。

目录
相关文章
|
2月前
|
负载均衡 并行计算 异构计算
大模型训练推理优化(5): FlexLink —— NVLink 带宽无损提升27%
本期我们将介绍蚂蚁集团ASystem团队在大模型通信优化上的新工作FlexLink,旨在通过动态聚合多路通信(NVLink,PCIe,RDMA),在H800等典型硬件上将典型通信算子如(AllReduce, All Gather)吞吐提升最高达27%,尤其适合大模型长序列推理(Prefill阶段),及训练等通信密集的带宽bound场景。方案对精度无影响。
|
17天前
|
监控 JavaScript Java
基于大模型技术的反欺诈知识问答系统
随着互联网与金融科技发展,网络欺诈频发,构建高效反欺诈平台成为迫切需求。本文基于Java、Vue.js、Spring Boot与MySQL技术,设计实现集欺诈识别、宣传教育、用户互动于一体的反欺诈系统,提升公众防范意识,助力企业合规与用户权益保护。
|
2月前
|
机器学习/深度学习 人工智能 算法
GSPO:Qwen让大模型强化学习训练告别崩溃,解决序列级强化学习中的稳定性问题
这是7月份的一篇论文,Qwen团队提出的群组序列策略优化算法及其在大规模语言模型强化学习训练中的技术突破
791 0
GSPO:Qwen让大模型强化学习训练告别崩溃,解决序列级强化学习中的稳定性问题
|
12天前
|
人工智能 自然语言处理 安全
AI助教系统:基于大模型与智能体架构的新一代教育技术引擎
AI助教系统融合大语言模型、教育知识图谱、多模态交互与智能体架构,实现精准学情诊断、个性化辅导与主动教学。支持图文语音输入,本地化部署保障隐私,重构“教、学、评、辅”全链路,推动因材施教落地,助力教育数字化转型。(238字)
|
26天前
|
机器学习/深度学习 算法 数据可视化
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
推理型大语言模型兴起,通过先思考再作答提升性能。本文介绍GRPO等强化学习算法,详解其原理并动手用Qwen2.5-3B训练推理模型,展示训练前后效果对比,揭示思维链生成的实现路径。
208 1
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
|
14天前
|
机器学习/深度学习 人工智能 物联网
# 大模型优化与压缩技术:2025年的实践与突破
2025年,随着大语言模型的规模和复杂度不断提升,模型优化与压缩技术已成为AI产业落地的关键瓶颈和研究热点。根据最新统计,顶级大语言模型的参数规模已突破万亿级别,如DeepSeek-R1模型的6710亿参数规模,这带来了前所未有的计算资源需求和部署挑战。在这种背景下,如何在保持模型性能的同时,降低计算成本、减少内存占用、提升推理速度,已成为学术界和产业界共同关注的核心问题。
|
20天前
|
机器学习/深度学习 人工智能 数据安全/隐私保护
阿里云 Qwen3 全栈 AI 模型:技术解析、开发者实操指南与 100 万企业落地案例
阿里云发布Qwen3全栈AI体系,推出Qwen3-Max、Qwen3-Next等七大模型,性能全球领先,开源生态超6亿次下载。支持百万级上下文、多模态理解,训练成本降90%,助力企业高效落地AI。覆盖制造、金融、创作等场景,提供无代码与代码级开发工具,共建超级AI云生态。
351 6

热门文章

最新文章