- 知乎评论爬取的技术挑战
知乎的评论数据通常采用动态加载(Ajax),这意味着直接使用requests+BeautifulSoup无法获取完整数据。此外,知乎还设置了反爬机制,包括:
● 请求头(Headers)验证(如User-Agent、Referer)
● Cookie/Session 校验(未登录用户只能获取部分数据)
● 频率限制(频繁请求可能导致IP被封)
因此,我们需要: - 模拟浏览器请求(携带Headers和Cookies)
- 解析动态API接口(而非静态HTML)
- 优化爬取速度(多线程/异步)
- 获取知乎评论API分析
(1)查找评论API
打开知乎任意一个问题(如 https://www.zhihu.com/question/xxxxxx),按F12进入开发者工具,切换到Network选项卡,筛选XHR请求
(2)解析评论数据结构
评论通常嵌套在data字段中,结构如下:
我们需要递归翻页(paging.next)爬取所有评论。"data": [ { "content": "评论内容", "author": { "name": "用户名" }, "created_time": 1620000000 } ], "paging": { "is_end": false, "next": "下一页URL" } }
AI 代码解读 - Python爬取知乎评论的三种方式
(1)单线程爬虫(基准测试)
使用requests库直接请求API,逐页爬取:
```import requests
import time
def fetch_comments(question_id, max_pages=5):
base_url = f"https://www.zhihu.com/api/v4/questions/{question_id}/answers"
headers = {
"User-Agent": "Mozilla/5.0",
"Cookie": "你的Cookie" # 登录后获取
}
comments = []
for page in range(max_pages):
url = f"{base_url}?offset={page * 10}&limit=10"
resp = requests.get(url, headers=headers).json()
for answer in resp["data"]:
comments.append(answer["content"])
time.sleep(1) # 避免请求过快
return comments
start_time = time.time()
comments = fetch_comments("12345678") # 替换为知乎问题ID
print(f"单线程爬取完成,耗时:{time.time() - start_time:.2f}秒")
缺点:逐页请求,速度慢(假设每页1秒,10页需10秒)。
(2)多线程爬虫(ThreadPoolExecutor)
使用concurrent.futures实现多线程并发请求:
```from concurrent.futures import ThreadPoolExecutor
def fetch_page(page, question_id):
url = f"https://www.zhihu.com/api/v4/questions/{question_id}/answers?offset={page * 10}&limit=10"
headers = {"User-Agent": "Mozilla/5.0"}
resp = requests.get(url, headers=headers).json()
return [answer["content"] for answer in resp["data"]]
def fetch_comments_multi(question_id, max_pages=5, threads=4):
with ThreadPoolExecutor(max_workers=threads) as executor:
futures = [executor.submit(fetch_page, page, question_id) for page in range(max_pages)]
comments = []
for future in futures:
comments.extend(future.result())
return comments
start_time = time.time()
comments = fetch_comments_multi("12345678", threads=4)
print(f"多线程爬取完成,耗时:{time.time() - start_time:.2f}秒")
AI 代码解读
优化点:
● 线程池控制并发数(避免被封)
● 比单线程快约3-4倍(4线程爬10页仅需2-3秒)
(3)异步爬虫(Asyncio + aiohttp)
使用aiohttp实现异步HTTP请求,进一步提高效率:
```import aiohttp
import asyncio
import time
代理配置
proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"
async def fetch_page_async(session, page, question_id):
url = f"https://www.zhihu.com/api/v4/questions/{question_id}/answers?offset={page * 10}&limit=10"
headers = {"User-Agent": "Mozilla/5.0"}
async with session.get(url, headers=headers) as resp:
data = await resp.json()
return [answer["content"] for answer in data["data"]]
async def fetch_comments_async(question_id, max_pages=5):
# 设置代理连接器
proxy_auth = aiohttp.BasicAuth(proxyUser, proxyPass)
connector = aiohttp.TCPConnector(
limit=20, # 并发连接数限制
force_close=True,
enable_cleanup_closed=True,
proxy=f"http://{proxyHost}:{proxyPort}",
proxy_auth=proxy_auth
)
async with aiohttp.ClientSession(connector=connector) as session:
tasks = [fetch_page_async(session, page, question_id) for page in range(max_pages)]
comments = await asyncio.gather(*tasks)
return [item for sublist in comments for item in sublist]
AI 代码解读
if name == "main":
start_time = time.time()
comments = asyncio.run(fetch_comments_async("12345678")) # 替换为知乎问题ID
print(f"异步爬取完成,耗时:{time.time() - start_time:.2f}秒")
print(f"共获取 {len(comments)} 条评论")
```
优势:
● 无GIL限制,比多线程更高效
● 适合高并发IO密集型任务(如爬虫)
- 性能对比与优化建议
爬取方式 10页耗时(秒) 适用场景
单线程 ~10 少量数据,简单爬取
多线程(4线程) ~2.5 中等规模,需控制并发
异步(Asyncio) ~1.8 大规模爬取,高并发需求
优化建议 - 控制并发数:避免触发反爬(建议10-20并发)。
- 随机延迟:time.sleep(random.uniform(0.5, 2)) 模拟人类操作。
- 代理IP池:防止IP被封(如使用requests+ProxyPool)。
- 数据存储优化:异步写入数据库(如MongoDB或MySQL)。