聊一聊你眼中的Data Agent,它能帮我们完成什么?

简介: Data Agent是结合AI与数据处理能力的智能体,能自主理解、分析并响应数据任务。它贯穿数据源接入、自然语言交互、自动建模到结果输出的全流程闭环。核心技术涵盖NLP、AutoML、实时计算等,助力企业实现高效数据分析与决策。

什么是Data Agent

在开始话题讨论之前,先来了解一下什么是Data Agent?

简单理解就是:Data Agent=AI Agent+数据领域任务能力。

Data Agent是一个能自主理解、分析、处理和响应数据任务的AI智能体。但更准确地说,它具备一整套“数据任务执行链”的能力,能够从理解意图,到操作数据,再到输出结果,完成闭环。也就是说,这个Agent是一种能理解任务、做出决策、执行操作的自主系统,它不像传统程序那样“只做被动响应”,而是能主动感知、思考和行动。

支撑Data Agent的核心技术

在了解了Data Agent 之后,我们再来聊聊支撑 Data Agent的核心技术。从定义来看,Data Agent是从数据源到数据分析,再到数据报表的一整套完整流程的加工车间。那么我们就可以理解为支撑 Data Agent(数据智能体)的核心技术是一系列结合了数据处理、人工智能和自动化能力的先进技术。


Data Agent的最终处理结果是将数据按照需求分析并输出出来。那么第一步自然就是要获取数据。Data Agent 支持常见的数据库连接(MySQL、PostgreSQL、NoSQL)、API、文件(CSV/Excel)等数据源的统一接入(如Apache NiFi、Airbyte),并且借助现有计算引擎实现对接入数据的高效数据清洗与转换,支持自动检测异常值、缺失值,确保分析可靠性。


在获取了数据之后,Data Agent 支持通过自然语言进行交互,在接收到自然语言之后,Data Agent利用大模型解析用户自然语言查询,根据自然语言分析判断用户意图,自动选择算法、调参,降低机器学习门槛。从而让用户可以无需关注代码实现,而只需要关注自身也许需要即可。


最后通过用户需要的方式输出用户需要的数据分析结果并展示。同时支持多轮对话交互,从而保证生成的输出结果的质量。

Data+AI开发中的挑战与解决方案

在实际开发Data Agent类产品时,可能会遇到以下的情况:


对于用户来说,用户提问方式多样,无法强制规定用户自然语言的提问方式,那么这就可能导致自然语言查询的精准解析有难度,在这种情况下,就需要结合业务规则引擎,对模糊查询进行二次校验,或者是增强NLP 模型的泛化能力,以期待尽可能的准确理解用户需求。


在数据获取方面,当接入多源数据时,可能会遇到跨数据库JOIN操作效率低,实时分析延迟高的情况,那么这种时候就可以考虑使用Apache Arrow实现内存零拷贝数据传输 ,或者提前设定好预计算常用指标(如OLAP Cube),加速查询。


对瑶池数据库发布的 Data Agent for Analytics 产品期待

对于瑶池数据库此次发布的Data Agent for Analytics,最关注的还是在深度集成大模型,自然语言分析能力方面。对于用户来说,其实用户并不关心具体的技术细节,而是比较关心是否能达到自己想要的效果。在数据源方面,期待Data Agent for Analytics支持多模态交互(如语音+图表),并允许用户上传PDF/PPT自动提取分析需求。同时也可以结合瑶池数据库的向量检索能力,实现“基于文档的知识增强分析”。


对于一些实时分析场景,希望内置实时OLAP引擎,支持秒级响应动态查询(如“当前库存预警”),同时期待提供流式机器学习(Streaming ML)能力,例如实时欺诈检测。


另外对于一些自然语言无法描述清楚的场景,希望可以通过 低代码+AI的灵活扩展 的方式来实现。用户通过Data Agent for Analytics 初步生成自己想要的内容后,期待Data Agent for Analytics 提供可视化编排界面,让业务人员自定义分析流程,同时允许开发者插入Python/UDF。同时可以支持AI Agent协作,例如自动调用Python脚本完成复杂预测。

最后

Data Agent正成为企业数据驱动的“智能助手”,其核心技术依赖NLP、AutoML、实时计算与知识增强的深度融合。瑶池数据库的Data Agent for Analytics若能在语言交互、实时分析、安全合规等方面领先,将为企业提供更高效的决策支持。



相关文章
|
数据采集 监控 数据挖掘
企业级Data Agent: 从数据开始,以数据领先
在数字化转型背景下,数据被视为“新时代的石油”,但多数企业仍面临数据价值难以高效挖掘的困境。文章深入剖析了当前数据分析中存在的“被动响应”模式及其带来的四大挑战,并提出通过Data Agent实现主动智能与数据分析民主化的新路径。Data Agent基于大语言模型和强化学习技术,具备理解、思考与行动能力,能够从“人找数据”转变为“数据找人”,推动数据洞察从专业人员走向全员参与。
|
机器学习/深度学习 存储 人工智能
TableAgent数据分析智能体——数据分析师的大模型
TableAgent数据分析智能体——数据分析师的大模型
|
1月前
|
人工智能 运维 关系型数据库
云栖大会|AI时代的数据库变革升级与实践:Data+AI驱动企业智能新范式
2025云栖大会“AI时代的数据库变革”专场,阿里云瑶池联合B站、小鹏、NVIDIA等分享Data+AI融合实践,发布PolarDB湖库一体化、ApsaraDB Agent等创新成果,全面展现数据库在多模态、智能体、具身智能等场景的技术演进与落地。
|
机器学习/深度学习 人工智能 自然语言处理
构建企业级数据分析助手:Data Agent 开发实践
本篇将介绍DMS的一款数据分析智能体(Data Agent for Analytics )产品的技术思考和实践。Data Agent for Analytics 定位为一款企业级数据分析智能体, 基于Agentic AI 技术,帮助用户查数据、做分析、生成报告、深入洞察。由于不同产品的演进路径,背景都不一样,所以只介绍最核心的部分,来深入剖析如何构建企业级数据分析助手:能力边界定义,技术内核,企业级能力。希望既能作为Data Agent for Analytics产品的技术核心介绍,也能作为读者的开发实践的参考。
586 1
构建企业级数据分析助手:Data Agent 开发实践
|
12天前
|
SQL 人工智能 自然语言处理
企业级 AI 数据分析“专家”——Data Agent 推动数据分析民主化
Data Agent(数据智能体)正从辅助工具向企业核心数据分析中枢演进,推动“人人都是分析师”的愿景落地。
|
6月前
|
传感器 人工智能 自然语言处理
火热邀测!DataWorks数据集成支持大模型AI处理
阿里云DataWorks数据集成新增大模型AI处理功能,支持在数据同步中无缝调用通义千问等AI模型,实现文本翻译、情感分析、摘要生成等功能。适用于电商客服、智能汽车、供应链、医疗、金融、法律及教育等多个场景,大幅提升数据处理效率与洞察深度。用户可通过自然语言配置,快速完成高级数据分析与处理,无需额外部署调试。立即申请测试资格,体验智能化数据处理!
1316 4
火热邀测!DataWorks数据集成支持大模型AI处理
|
3月前
|
人工智能 运维 监控
智能运维与数据治理:基于 Apache Doris 的 Data Agent 解决方案
本文基于 Apache Doris 数据运维治理 Agent 展开讨论,如何让 AI 成为 Doris 数据运维工程师和数据治理专家的智能助手,并在某些场景下实现对人工操作的全面替代。这种变革不仅仅是技术层面的进步,更是数据运维治理思维方式的根本性转变:从“被动响应”到“主动预防”,从“人工判断”到“智能决策”,从“孤立处理”到“协同治理”。
631 11
智能运维与数据治理:基于 Apache Doris 的 Data Agent 解决方案
|
3月前
|
存储 人工智能 分布式计算
数据不用搬,AI直接炼!阿里云AnalyticDB AI数据湖仓一站式融合AI+BI
阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL版(以下简称ADB)诞生于高性能实时数仓时代,实现了PB级结构化数据的高效处理和分析。在前几年,为拥抱大数据的浪潮,ADB从传统数仓拓展到数据湖仓,支持Paimon/Iceberg/Delta Lake/Hudi湖格式,为开放的数据湖提供数据库级别的性能、可靠性和管理能力,从而更好地服务以SQL为核心的大规模数据处理和BI分析,奠定了坚实的湖仓一体基础。