智能体(AI Agent)开发实战之【LangChain】(四)结合大模型基于RAG实现本地知识库问答和纠错

简介: 本文介绍如何基于RAG实现知识库问答系统的输入内容纠错功能。通过加载本地知识库、构建向量数据库,结合大语言模型对输入文本进行检索比对与纠错优化,提升问答准确性。

上几篇内容介绍了基于RAG实现简单的知识库问答功能及优化,本篇文章基于原有功能做下输入内容的纠错。实现的功能是输入一段文字,从本地知识库中检索信息进行比对并提示其中的错误。
一、具体的功能实现
代码实现逻辑还是从本地加载知识源数据,进行文本分隔和嵌入,然后存入向量数据库中。相关的代码已经在前几篇文章中有介绍,可以参考。
1.定义纠错和优化方法

def correct_and_optimize_text(input_text, vector_store):
    relevant_docs = vector_store.similarity_search(input_text)
    result = chain.run(input_documents=relevant_docs, question=f"请对以下文本进行纠错和优化:{input_text}")
    return result

2.调用测试

question = input("请输入你的问题(输入 'q' 退出):")

if question.lower() == 'q':
   break
else:
     if "知识库" not in question:
         response = chat_model.invoke(question)
         print("答案是:", response.content)
     else:
         answer = correct_and_optimize_text(question, vector_store)
         print("答案是:", {answer})

3.运行代码测试功能
image.png
二、总结
用大模型结合本地知识库可以实现优化和纠错功能,可以从知识源、检索策略、大语言模型、提示工程和评估反馈等多个维度入手提高效果。大家可以在实践中摸索并改进,实现高级智能体。

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
2月前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
2月前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
本文介绍RAG(检索增强生成)技术,结合Spring AI与本地及云知识库实现学术分析AI应用,利用阿里云Qwen-Plus模型提升回答准确性与可信度。
1201 90
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
|
2月前
|
人工智能 自然语言处理 数据挖掘
从幻觉到精准:RAG如何重塑AI对话的可靠性
从幻觉到精准:RAG如何重塑AI对话的可靠性
274 111
|
2月前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
1362 16
构建AI智能体:一、初识AI大模型与API调用
|
2月前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
565 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
2月前
|
存储 人工智能 搜索推荐
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
本文介绍基于LangGraph构建的双层记忆系统,通过短期与长期记忆协同,实现AI代理的持续学习。短期记忆管理会话内上下文,长期记忆跨会话存储用户偏好与决策,结合人机协作反馈循环,动态更新提示词,使代理具备个性化响应与行为进化能力。
524 10
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
|
2月前
|
人工智能 安全 开发工具
C3仓库AI代码门禁通用实践:基于Qwen3-Coder+RAG的代码评审
本文介绍基于Qwen3-Coder、RAG与Iflow在C3级代码仓库落地LLM代码评审的实践,实现AI辅助人工评审。通过CI流水线自动触发,结合私域知识库与生产代码同仓管理,已成功拦截数十次高危缺陷,显著提升评审效率与质量,具备向各类代码门禁平台复用推广的价值。(239字)
585 24
|
2月前
|
人工智能 IDE 开发工具
从6人日到1人日:一次AI驱动的客户端需求开发实战
从6人日到1人日:一次AI驱动的客户端需求开发实战
从6人日到1人日:一次AI驱动的客户端需求开发实战
|
2月前
|
机器学习/深度学习 人工智能 JSON
PHP从0到1实现 AI 智能体系统并且训练知识库资料
本文详解如何用PHP从0到1构建AI智能体,涵盖提示词设计、记忆管理、知识库集成与反馈优化四大核心训练维度,结合实战案例与系统架构,助你打造懂业务、会进化的专属AI助手。
288 6
|
2月前
|
数据采集 人工智能 JSON
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码

热门文章

最新文章