智能体(AI Agent)开发实战之【LangChain】(三)结合大模型基于RAG实现本地知识库问答优化

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 智能体(AI Agent)开发实战之【LangChain】(三)结合大模型基于RAG实现本地知识库问答优化

上一篇介绍了基于RAG实现简单的知识库问答功能,使用了两个向量数据库Chroma和FAISS,测试了功能情况。这篇文章继续优化,引入开源嵌入大模型all-MiniLM-L6-v2,并改造为先用大模型回答,再根据问题关键词从内部知识库查询问答结果。
一、嵌入大模型all-MiniLM-L6-v2介绍
all - MiniLM - L6 - v2 是一个轻量级的语言模型,在自然语言处理领域应用广泛。基于 Transformer 架构,有 6 层 Transformer 编码器,具有 38M 参数,模型文件大小约 70MB。该系列模型旨在通过知识蒸馏等技术,在保持较高性能的同时,减小模型规模,提高模型的运行效率和可部署性。以下是这个模型的特点
1.轻量级
参数量少,模型文件小,运行时资源消耗少,在 CPU 上推理速度可达 780 字 / 秒,GPU 显存需求仅 2GB,适合在边缘设备、集成显卡或资源受限的环境中运行。
2.性能出色
通过对比学习和知识蒸馏技术,在句子相似度、信息检索等任务中表现优异,在相关的 MTEB 榜单准确率接近大型模型,尤其擅长处理短文本。并且对多语言有较好的兼容性,支持 30 多种语言场景。
3.开发友好
借助 sentence - transformers 库,仅需几行代码即可加载模型并生成句子嵌入,开发成本低,便于集成到各种应用中。同时,它还支持与 Faiss 、Chroma等向量数据库结合,实现高效的文本聚类与检索。
二、具体的功能实现
1.创建HuggingFaceEmbeddings实例

model_path = r"E:\models\all-MiniLM-L6-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}

embeddings = HuggingFaceEmbeddings(
    model_name=model_path,
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs
)

# 使用 Chroma 创建向量数据库并存储文档向量
vectorstore = Chroma.from_documents(docs, embeddings)
AI 代码解读

2.问答优化

# 获取用户输入的问题
question = input("请输入你的问题(输入 'q' 退出):")
   if question.lower() == 'q':
      break
   else:
      if "知识库" not in question:
          response = chat_model.invoke(question)
          print("答案是:", response.content)
      else:
           answer = qa.run(question)
           print("答案是:", answer)
AI 代码解读

3.运行代码测试功能
增加了几个文档,从不同纬度描述了相关内容,如下图所示:
image.png
运行效果如下图所示:
image.png

三、总结
all-MiniLM-L6-v2是低版本的模型,我只是为了本地测试。如需要可以使用更大参数的all-MiniLM-L12-v2等。不同的预训练模型在不同的任务和领域中可能表现不同,要根据具体需求选择合适的模型。后续可基于这个功能进行扩展和优化,敬请关注。

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
打赏
0
0
1
0
3
分享
相关文章
重磅发布:VTJ.PRO 赋能若依(RuoYi)「AI + 低代码」能力,企业级开发效率跃升 300%
VTJ.PRO 与若依(RuoYi)深度集成,融合双向代码穿梭、AI智能引擎及多模态渲染技术,打造“设计即生产”新体验。支持可视化开发、AI生成代码、旧组件重构,提升企业开发效率,助力数字化转型。
165 29
基于OpenAPI和AI coding的上云智能体构建实践
本文探讨了基于LLM和AI编程技术构建上云智能体的实践,提出通过人在回路中设计整体流程、LLM自主决策与执行的方式,有效减少幻觉并提升任务正确率。方案在多轮迭代中逐步生成代码,解决了API参数依赖等问题,并验证了三大核心设计理念的可行性。
基于OpenAPI和AI coding的上云智能体构建实践
|
17天前
|
还在配置规则文件和智能体?Roo Commander:预置90+领域专家,开箱即用的AI编程新体验
Roo指挥官是一款创新AI编程助手,通过智能调度90多位虚拟技术专家,实现对复杂项目的自主规划与高效执行。用户无需手动选择专家或反复调整提示,只需提交需求,系统即可自动分析、拆解任务并协调最合适的技术角色完成开发。文中以构建3D互动简历为例,展示了其从需求分析到项目落地的全流程自动化能力,显著提升开发效率,开启AI驱动的智能化编程新体验。
58 0
AI邂逅青年科学家,大模型化身科研“搭子”
2025年6月30日,首届魔搭开发者大会在北京举办,涵盖前沿模型、MCP、Agent等七大论坛。科研智能主题论坛汇聚多领域科学家,探讨AI与科研融合的未来方向。会上展示了AI在药物发现、生物计算、气候变化、历史文献处理等多个领域的创新应用,标志着AI for Science从工具辅助向智能体驱动的范式跃迁。阿里云通过“高校用云”计划推动科研智能化,助力全球科研创新。
AI代理内存消耗过大?9种优化策略对比分析
在AI代理系统中,多代理协作虽能提升整体准确性,但真正决定性能的关键因素之一是**内存管理**。随着对话深度和长度的增加,内存消耗呈指数级增长,主要源于历史上下文、工具调用记录、数据库查询结果等组件的持续积累。本文深入探讨了从基础到高级的九种内存优化技术,涵盖顺序存储、滑动窗口、摘要型内存、基于检索的系统、内存增强变换器、分层优化、图形化记忆网络、压缩整合策略以及类操作系统内存管理。通过统一框架下的代码实现与性能评估,分析了每种技术的适用场景与局限性,为构建高效、可扩展的AI代理系统提供了系统性的优化路径和技术参考。
55 4
AI代理内存消耗过大?9种优化策略对比分析
AI智能体从请求到响应,这系统过程中究竟藏着什么?
三桥君带你深入解析AI智能体从用户请求到生成响应的全流程,涵盖接入服务、智能体应用、知识检索、模型重排、LLM调用与工具执行等关键技术环节,揭开AI背后的运作原理。
91 2
Springboot集成AI Springboot3 集成阿里云百炼大模型CosyVoice2 实现Ai克隆语音(未持久化存储)
本项目基于Spring Boot 3.5.3与Java 17,集成阿里云百炼大模型CosyVoice2实现音色克隆与语音合成。内容涵盖项目搭建、音色创建、音频合成、音色管理等功能,适用于希望快速掌握Spring Boot集成语音AI技术的开发者。需提前注册阿里云并获取API Key。
高校实验实训课程开发:基于现有的硬件基础和开源能力研发最前沿的AI实验课程
更多基于学校现有硬件基础:企业需求场景的开发和发展,更加注重上层数据和应用,各类工具软件的出现,极大提升了各类硬件的应用价值。我们看到各类硬件厂商,想方设法把硬件卖给学校,但是很多硬件不是在那里尘封,就是寥寥无几的使用场景,我们希望基于学校现有的硬件基础去开发更多面向不同行业或专业的实验实训课程,物尽其用。基于学校现有的硬件,集约开发,极大降低硬件投入成本。
60 7
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问