基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM

简介: 本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法运行软件版本
matlab2022a/matlab2024b

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

plot(gb1,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('优化迭代次数');
ylabel('适应度值');



figure
plot(gb1,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');



X     = g1;

%bilstm
layers=bilstm_layer(bw_in,round(X(1)),round(X(2)),bw_out,X(3),X(4),X(5));

%参数设定
opts = trainingOptions('adam', ...
    'MaxEpochs',10, ...
    'GradientThreshold',1,...
    'ExecutionEnvironment','cpu',...
    'InitialLearnRate',X(6), ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',2, ...   
    'LearnRateDropFactor',0.5, ...
    'Shuffle','once',...           
    'SequenceLength',1,...
    'MiniBatchSize',64,...
    'Verbose',1);

%网络训练
[net1,INFO] = trainNetwork(Xtrain,Ytrain,layers,opts);

Rmsev = INFO.TrainingRMSE;


figure;
plot(Rmsev)
xlabel('训练次数');
ylabel('RMSE');


%预测
for i = 1:length(Xtest)
    Ypred(i)  = net1.predict(Xtest(i));
end

figure
plot(Ypred,'r-')
hold on 
plot(Ytest','b-')
legend('预测值','实际值')
xlabel('时间(s)')
ylabel('负荷(KW)')
rmse = mean((Ypred(:)-Ytest(:)).^2);% 计算均方根误差
title(sprintf('PSO-biLSTM分析-RMSE=%.3f', rmse));
save R3.mat Ypred Ytest rmse Rmsev

4.算法理论概述
在序列预测问题中,如气象数据预测、交通流量预测等,准确捕捉序列中的长期依赖关系和上下文信息是关键。双向长短期记忆网络(BiLSTM)能有效处理长序列数据,同时考虑序列的过去和未来信息,但BiLSTM的性能受其参数设置的影响较大。粒子群优化算法(PSO)是一种基于群体智能的优化算法,具有全局搜索能力强、收敛速度快等优点。将PSO应用于BiLSTM的参数优化,可以提高BiLSTM的序列预测性能。

   LSTM是一种特殊的循环神经网络(RNN),旨在解决传统 RNN 在处理长序列时的梯度消失和梯度爆炸问题,从而更好地捕捉长序列中的长期依赖关系。其核心结构包含输入门、遗忘门、输出门以及记忆单元。

   BiLSTM 是在 LSTM 基础上发展而来,它通过同时向前和向后处理序列,能够更好地捕捉序列中的前后文信息,从而在序列预测任务中表现更优。BiLSTM 由一个前向 LSTM 和一个后向 LSTM 组成。

image.png

   这种结构使得 BiLSTM 能够同时利用序列的前文和后文信息,在处理需要全局信息的序列预测任务时具有明显优势。

   在本课题中,将pso应用于BiLSTM主要是为了优化BiLSTM的超参数,如学习率、隐藏层神经元数量等,以提升其预测性能。大致的步骤如下:

1.随机初始化一群粒子的位置和速度,每个粒子的位置对应一组 BiLSTM 的参数。

2.使用训练集对 BiLSTM 进行训练,并根据验证集的预测结果定义适应度函数。常见的适应度函数是均方误差(MSE):

image.png

    PSO能够在参数空间中进行全局搜索,有助于找到更优的BiLSTM参数组合,避免陷入局部最优解。
相关文章
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
252 5
|
1月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
113 0
|
2月前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
121 1
|
1月前
|
机器学习/深度学习 算法 物联网
基于遗传方法的动态多目标优化算法
基于遗传方法的动态多目标优化算法
|
2月前
|
机器学习/深度学习 存储 算法
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
148 0
|
3月前
|
机器学习/深度学习 算法 安全
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
208 0
|
5月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。

热门文章

最新文章