三、最新技术实操内容
(一)微服务架构实践
1. 服务注册与发现(Spring Cloud Alibaba Nacos)
环境搭建
# 下载Nacos服务器
wget https://github.com/alibaba/nacos/releases/download/2.2.3/nacos-server-2.2.3.tar.gz
tar -zxvf nacos-server-2.2.3.tar.gz
cd nacos/bin
# 启动Nacos(单机模式)
sh startup.sh -m standalone
AI 代码解读
服务注册示例(Spring Boot应用)
// 添加依赖
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
<version>2022.0.0.0-RC2</version>
</dependency>
// 配置文件 application.yml
spring:
cloud:
nacos:
discovery:
server-addr: localhost:8848
// 主类添加注解
@SpringBootApplication
@EnableDiscoveryClient
public class UserServiceApplication {
public static void main(String[] args) {
SpringApplication.run(UserServiceApplication.class, args);
}
}
AI 代码解读
2. 服务调用与负载均衡(OpenFeign + Ribbon)
// 添加依赖
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>
// 创建Feign客户端接口
@FeignClient(name = "order-service")
public interface OrderServiceClient {
@GetMapping("/orders/{userId}")
List<Order> getOrdersByUserId(@PathVariable("userId") Long userId);
}
// 主类启用Feign
@SpringBootApplication
@EnableFeignClients
public class UserServiceApplication {
... }
AI 代码解读
3. 网关(Spring Cloud Gateway)
// 添加依赖
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-gateway</artifactId>
</dependency>
// 配置路由规则
spring:
cloud:
gateway:
routes:
- id: user_route
uri: lb://user-service
predicates:
- Path=/api/users/**
- id: order_route
uri: lb://order-service
predicates:
- Path=/api/orders/**
AI 代码解读
(二)容器化与Kubernetes
1. Docker基础操作
# 构建镜像
docker build -t user-service:v1 .
# 运行容器
docker run -d -p 8080:8080 --name user-service user-service:v1
# 查看容器日志
docker logs -f user-service
# 创建Docker网络
docker network create microservice-network
# 连接容器到网络
docker network connect microservice-network user-service
AI 代码解读
2. Kubernetes部署应用
Deployment配置示例(user-service-deployment.yaml)
apiVersion: apps/v1
kind: Deployment
metadata:
name: user-service
spec:
replicas: 3
selector:
matchLabels:
app: user-service
template:
metadata:
labels:
app: user-service
spec:
containers:
- name: user-service
image: user-service:v1
ports:
- containerPort: 8080
env:
- name: DB_URL
valueFrom:
configMapKeyRef:
name: db-config
key: db-url
AI 代码解读
Service配置示例(user-service-service.yaml)
apiVersion: v1
kind: Service
metadata:
name: user-service
spec:
selector:
app: user-service
ports:
- protocol: TCP
port: 80
targetPort: 8080
type: ClusterIP
AI 代码解读
部署应用
# 创建ConfigMap
kubectl create configmap db-config --from-literal=db-url=jdbc:mysql://mysql-service:3306/users
# 部署应用
kubectl apply -f user-service-deployment.yaml
kubectl apply -f user-service-service.yaml
# 查看部署状态
kubectl get deployments
kubectl get services
AI 代码解读
(三)云原生技术实践
1. 服务网格(Istio)
# 安装Istio
curl -L https://istio.io/downloadIstio | sh -
cd istio-1.18.2
export PATH=$PWD/bin:$PATH
istioctl install --set profile=demo -y
# 注入Sidecar
kubectl label namespace default istio-injection=enabled
# 部署示例应用
kubectl apply -f samples/bookinfo/platform/kube/bookinfo.yaml
# 创建网关
kubectl apply -f samples/bookinfo/networking/bookinfo-gateway.yaml
# 验证部署
istioctl analyze
AI 代码解读
2. 可观测性(Prometheus + Grafana)
Prometheus配置(prometheus.yml)
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'istio-mesh'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_name]
regex: istio-telemetry;prometheus
action: keep
AI 代码解读
部署Prometheus和Grafana
kubectl apply -f samples/addons kubectl rollout status deployment prometheus -n istio-system kubectl rollout status deployment grafana -n istio-system
AI 代码解读
(四)高性能开发实践
1. Reactor响应式编程
// 添加依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-webflux</artifactId>
</dependency>
// 创建响应式Repository
public interface UserRepository extends ReactiveCrudRepository<User, Long> {
Flux<User> findByAgeGreaterThan(int age);
}
// 创建响应式Controller
@RestController
@RequestMapping("/users")
public class UserController {
private final UserRepository userRepository;
public UserController(UserRepository userRepository) {
this.userRepository = userRepository;
}
@GetMapping
public Flux<User> getAllUsers() {
return userRepository.findAll();
}
@PostMapping
public Mono<User> createUser(@RequestBody User user) {
return userRepository.save(user);
}
}
AI 代码解读
2. 异步编程(CompletableFuture)
public class AsyncService {
private final ExecutorService executor = Executors.newFixedThreadPool(10);
public CompletableFuture<User> getUserDetails(Long userId) {
return CompletableFuture.supplyAsync(() -> {
// 模拟数据库查询
return userRepository.findById(userId)
.orElseThrow(() -> new RuntimeException("User not found"));
}, executor);
}
public CompletableFuture<List<Order>> getOrders(Long userId) {
return CompletableFuture.supplyAsync(() -> {
// 模拟远程调用
return orderServiceClient.getOrdersByUserId(userId);
}, executor);
}
public CompletableFuture<UserProfile> getUserProfile(Long userId) {
CompletableFuture<User> userFuture = getUserDetails(userId);
CompletableFuture<List<Order>> ordersFuture = getOrders(userId);
return userFuture.thenCombine(ordersFuture, (user, orders) ->
new UserProfile(user, orders));
}
}
AI 代码解读
(五)数据持久化实践
1. Redis高级应用(分布式锁)
// Redisson实现分布式锁
@Service
public class RedisLockService {
private final RedissonClient redissonClient;
public RedisLockService(RedissonClient redissonClient) {
this.redissonClient = redissonClient;
}
public void processWithLock(String lockKey, Runnable task) {
RLock lock = redissonClient.getLock(lockKey);
try {
// 尝试获取锁,等待10秒,自动释放时间30秒
boolean isLocked = lock.tryLock(10, 30, TimeUnit.SECONDS);
if (isLocked) {
task.run();
} else {
throw new RuntimeException("获取锁失败");
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
throw new RuntimeException("获取锁被中断", e);
} finally {
if (lock.isHeldByCurrentThread()) {
lock.unlock();
}
}
}
}
AI 代码解读
2. 分库分表(ShardingSphere)
配置示例(application.yml)
spring:
shardingsphere:
datasource:
names: ds0,ds1
ds0:
type: com.zaxxer.hikari.HikariDataSource
jdbc-url: jdbc:mysql://localhost:3306/db0
username: root
password: root
ds1:
type: com.zaxxer.hikari.HikariDataSource
jdbc-url: jdbc:mysql://localhost:3306/db1
username: root
password: root
rules:
sharding:
tables:
orders:
actual-data-nodes: ds$->{
0..1}.orders_$->{
0..1}
table-strategy:
standard:
sharding-column: order_id
sharding-algorithm-name: order-table-inline
key-generate-strategy:
column: order_id
key-generator-name: snowflake
sharding-algorithms:
order-table-inline:
type: INLINE
props:
algorithm-expression: orders_$->{
order_id % 2}
key-generators:
snowflake:
type: SNOWFLAKE
AI 代码解读
上述实操内容涵盖了当前互联网大厂的主流技术栈,你可以根据自身情况进行实践。建议先搭建本地开发环境,逐步实现各模块功能,遇到问题可查阅官方文档或社区资源。如果需要进一步的代码解释或优化建议,随时告诉我。
Java 程序员,互联网大厂,面试指南,学习指南,2025 最新,面试知识点,面试技巧,前沿技术,实操内容,Java 面试,大厂面试,程序员学习,Java 技术,面试攻略,编程学习
资源地址:
https://pan.quark.cn/s/14fcf913bae6
--