题目:239. 滑动窗口最大值
给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回 滑动窗口中的最大值 。
示例 1:
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
示例 2:
输入:nums = [1], k = 1
输出:[1]
提示:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
1 <= k <= nums.length
思考过程与知识点:
这是使用单调队列的经典题目。
难点是如何求一个区间里的最大值呢? (这好像是废话),暴力一下不就得了。
暴力方法,遍历一遍的过程中每次从窗口中再找到最大的数值,这样很明显是O(n × k)的算法。
有的同学可能会想用一个大顶堆(优先级队列)来存放这个窗口里的k个数字,这样就可以知道最大的最大值是多少了, 但是问题是这个窗口是移动的,而大顶堆每次只能弹出最大值,我们无法移除其他数值,这样就造成大顶堆维护的不是滑动窗口里面的数值了。所以不能用大顶堆。
此时我们需要一个队列,这个队列呢,放进去窗口里的元素,然后随着窗口的移动,队列也一进一出,每次移动之后,队列告诉我们里面的最大值是什么。
题解:
class Solution { private: class MyQueue { //单调队列(从大到小) public: deque<int> que; // 使用deque来实现单调队列 // 每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。 // 同时pop之前判断队列当前是否为空。 void pop(int value) { if (!que.empty() && value == que.front()) { que.pop_front(); } } // 如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。 // 这样就保持了队列里的数值是单调从大到小的了。 void push(int value) { while (!que.empty() && value > que.back()) { que.pop_back(); } que.push_back(value); } // 查询当前队列里的最大值 直接返回队列前端也就是front就可以了。 int front() { return que.front(); } }; public: vector<int> maxSlidingWindow(vector<int>& nums, int k) { MyQueue que; vector<int> result; for (int i = 0; i < k; i++) { // 先将前k的元素放进队列 que.push(nums[i]); } result.push_back(que.front()); // result 记录前k的元素的最大值 for (int i = k; i < nums.size(); i++) { que.pop(nums[i - k]); // 滑动窗口移除最前面元素 que.push(nums[i]); // 滑动窗口前加入最后面的元素 result.push_back(que.front()); // 记录对应的最大值 } return result; } };
题目:347. 前 K 个高频元素
给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。
示例 1:
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
示例 2:
输入: nums = [1], k = 1
输出: [1]
提示:
1 <= nums.length <= 105
k 的取值范围是 [1, 数组中不相同的元素的个数]
题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的
思考过程与知识点:
首先统计元素出现的频率,这一类的问题可以使用map来进行统计。
然后是对频率进行排序,这里我们可以使用一种 容器适配器就是优先级队列。
什么是优先级队列呢?
其实就是一个披着队列外衣的堆,因为优先级队列对外接口只是从队头取元素,从队尾添加元素,再无其他取元素的方式,看起来就是一个队列。
而且优先级队列内部元素是自动依照元素的权值排列。那么它是如何有序排列的呢?
缺省情况下priority_queue利用max-heap(大顶堆)完成对元素的排序,这个大顶堆是以vector为表现形式的complete binary tree(完全二叉树)。
什么是堆呢?
堆是一棵完全二叉树,树中每个结点的值都不小于(或不大于)其左右孩子的值。 如果父亲结点是大于等于左右孩子就是大顶堆,小于等于左右孩子就是小顶堆。
所以大家经常说的大顶堆(堆头是最大元素),小顶堆(堆头是最小元素),如果懒得自己实现的话,就直接用priority_queue(优先级队列)就可以了,底层实现都是一样的,从小到大排就是小顶堆,从大到小排就是大顶堆。
本题我们就要使用优先级队列来对部分频率进行排序。
题解:
class Solution { public: // 小顶堆 class mycomparison { public: bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) { return lhs.second > rhs.second; } }; vector<int> topKFrequent(vector<int>& nums, int k) { // 要统计元素出现频率 unordered_map<int, int> map; // map<nums[i],对应出现的次数> for (int i = 0; i < nums.size(); i++) { map[nums[i]]++; } // 对频率排序 // 定义一个小顶堆,大小为k priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que; // 用固定大小为k的小顶堆,扫面所有频率的数值 for (unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++) { pri_que.push(*it); if (pri_que.size() > k) { // 如果堆的大小大于了K,则队列弹出,保证堆的大小一直为k pri_que.pop(); } } // 找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组 vector<int> result(k); for (int i = k - 1; i >= 0; i--) { result[i] = pri_que.top().first; pri_que.pop(); } return result; } };